Refine Your Search

Topic

Author

Search Results

Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

A Statistical Approach for Real-Time Prognosis of Safety-Critical Vehicle Systems

2007-04-16
2007-01-1497
The paper describes the development of a vehicle stability indicator based on the correlation between various current vehicle chassis sensors such as hand wheel angle, yaw rate and lateral acceleration. In general, there is a correlation between various pairs of sensor signals when the vehicle operation is linear and stable and a lack of correlation when the vehicle is becoming unstable or operating in a nonlinear region. The paper outlines one potential embodiment of the technology that makes use of the Mahalanobis distance metric to assess the degree of correlation among the sensor signals. With this approach a single scalar metric provides an accurate indication of vehicle stability.
Technical Paper

An Adaptable Software Safety Process for Automotive Safety-Critical Systems

2004-03-08
2004-01-1666
In this paper, we review existing software safety standards, guidelines, and other software safety documents. Common software safety elements from these documents are identified. We then describe an adaptable software safety process for automotive safety-critical systems based on these common elements. The process specifies high-level requirements and recommended methods for satisfying the requirements. In addition, we describe how the proposed process may be integrated into a proposed system safety process, and how it may be integrated with an existing software development process.
Technical Paper

An Efficient Alternative for Computing Algorithm Detection Thresholds

2006-04-03
2006-01-0009
Commonly, a significant event is detected when a normally stable engine parameter (ex. sensor voltage, sensor current, air flow, pedal position, fuel level, tire pressure, engine acceleration, etc.) transiently exceeds a calibrated detection threshold. Many implementations of detection thresholds rely on multi-input lookup tables or functions and are complex and difficult to calibrate. An approach is presented to minimize threshold calibration effort and complexity, while improving detection performance, by dynamically computing thresholds on-line based on current real-time data. Determining engine synchronization without a camshaft position sensor is presented as an illustrative application.
Technical Paper

An Experimental Study on Engine Dynamics Model Based In-Cylinder Pressure Estimation

2012-04-16
2012-01-0896
The information provided by the in-cylinder pressure signal is of great importance for modern engine management systems. The obtained information is implemented to improve the control and diagnostics of the combustion process in order to meet the stringent emission regulations and to improve vehicle reliability and drivability. The work presented in this paper covers the experimental study and proposes a comprehensive and practical solution for the estimation of the in-cylinder pressure from the crankshaft speed fluctuation. Also, the paper emphasizes the feasibility and practicality aspects of the estimation techniques, for the real-time online application. In this study an engine dynamics model based estimation method is proposed. A discrete-time transformed form of a rigid-body crankshaft dynamics model is constructed based on the kinetic energy theorem, as the basis expression for total torque estimation.
Technical Paper

An Overview of Hardware-In-the-Loop Testing Systems at Visteon

2004-03-08
2004-01-1240
This paper discusses our experiences on the implementation and benefits of using the Hardware-In-the-Loop (HIL) systems for Powertrain control system software verification and validation. The Visteon HIL system integrated with several off-the-shelf diagnostics and calibration tools is briefly explained. Further, discussions on test automation sequence control and failure insertion are outlined The capabilities and advantages of using HIL for unit level software testing, open loop and closed-loop system testing, fault insertion and test automation are described. HIL also facilitates Software and Hardware Interface validation testing with low-level driver and platform software. This paper attempts to show the experiences with and capabilities of these HIL systems.
Technical Paper

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

2008-06-23
2008-01-1767
The requirement of reduced emissions and improved fuel economy led the introduction of direct-injection (DI) spark-ignited (SI) engines. Dual-fuel injection system (direct-injection and port-fuel-injection (PFI)) was also used to improve engine performance at high load and speed. Ethanol is one of the several alternative transportation fuels considered for replacing fossil fuels such as gasoline and diesel. Ethanol offers high octane quality but with lower energy density than fossil fuels. This paper presents the combustion characteristics of a single cylinder dual-fuel injection SI engine with the following fueling cases: a) gasoline for PFI and DI, b) PFI gasoline and DI ethanol, and c) PFI ethanol and DI gasoline. For this study, the DI fueling portion varied from 0 to 100 percentage of the total fueling over different engine operational conditions while the engine air-to-fuel ratio remained at a constant level.
Technical Paper

Controller Integrity in Automotive Failsafe System Architectures

2006-04-03
2006-01-0840
Embedded controllers and digital signal processors are increasingly being used in automotive safety critical control systems. Controller integrity is a significant concern in these systems. Over the past decade, several techniques have been published about controller safety and integrity verification. These techniques include: single processor with watchdog, dual processors, dual core processor, and asymmetric processor (intelligent watchdog). Each of these techniques have benefits, however, many new non-distributed safety-critical systems are applying the asymmetric processor technique to help verify controller integrity. This paper discusses an overview of five controller integrity techniques, and then provides a detailed discussion of an asymmetric processor approach. This paper presents two different options within the asymmetric processor approach.
Technical Paper

Controlling Induction System Deposits in Flexible Fuel Vehicles Operating on E85

2007-10-29
2007-01-4071
With the wider use of biofuels in the marketplace, a program was conducted to study the deposit forming tendencies and performance of E85 (85% denatured ethanol and 15% gasoline) in a modern Flexible Fuel Vehicle (FFV). The test vehicle for this program was a 2006 General Motors Chevrolet Impala FFV equipped with a 3.5 liter V-6 powertrain. A series of 5,000 mile Chassis Dynamometer (CD) Intake Valve Deposits (IVD) and performance tests were conducted while operating the FFV on conventional (E0) regular unleaded gasoline and E85 to determine the deposit forming tendencies of both fuels. E85 test fuels were found to generate significantly higher levels of IVD than would have been predicted from the base gasoline component alone. The effects on the weight and composition of IVD due to a corrosion inhibitor and sulfates that were indigenous to one of the ethanols were also studied.
Technical Paper

DOE Guidelines on Hydrogen Safety

2005-04-11
2005-01-0010
Hydrogen is the most plentiful gas in the universe. However hydrogen never occurs naturally, always combines with other elements such as oxygen and carbon [1]. Hydrogen is the ultimate clean energy carrier once it is separated from other elements [11]. Moreover hydrogen can easily be generated from renewable energy sources. Hydrogen is also nonpolluting, and forms water as a harmless byproduct during the oxidation process. Safe practices in the production, storage, distribution, and use of hydrogen are essential components of a hydrogen economy [2]. A catastrophic failure in any hydrogen project could irreparably damage the entire transition strategy. The safety program element delineates the steps that the hydrogen, fuel cells & infrastructure technologies program shall ensure that all projects are performed in a safe manner.
Technical Paper

Design Process Changes Enabling Rapid Development

2004-10-18
2004-21-0085
This paper will address the electronic development in the wireless industry and compare it to the electronic development in the automotive industry. The wireless industry is characterized by rapid, dramatic high tech changes with a less than two-year cycle time and an equivalent life cycle. The automotive electronics industry is working toward reducing the typical 2 to 3 year development cycle down 1 to 2 years but with a life cycle of 10 years or more. In addition to realizing the electronic development benefits seen in the wireless industry, the automotive industry places significantly more emphasis on the quality and reliability aspects of their designs as many of them are targeted toward, or interface with, safety critical applications. One of the lessons learned from the wireless industry is the development process; where the hardware selection process can be accomplished in a virtual environment in conjunction with concurrent software development.
Technical Paper

Design Review a Tool for Product Development Quality Assurance

2003-11-18
2003-01-3670
Same of the more enticing and productive opportunities to a useful work in product assurance are those of influencing the design of a product. The primary concern of design assurance is preventing or correcting those design errors that lead to poor product integrity. One of the tools used by the development teams in many organizations is the Design Review. The impact in cost and quality is directly affected by the correct utilization of the tool.
Technical Paper

Design of an Automotive Grade Controller for In-Cylinder Pressure Based Engine Control Development

2007-04-16
2007-01-0774
This paper describes a new tool to capture cylinder pressure information, calculate combustion parameters, and implement control algorithms. There are numerous instrumentation and prototyping systems which can provide some or all of this capability. The Cylinder Pressure Development Controller (CPDC) is unique in that it uses advanced high volume automotive grade circuitry, packaging, and software methodologies. This approach provides insight regarding the implementation of cylinder pressure based controls in a production engine management system. A high performance data acquisition system is described along with a data reduction technique to minimize data processing requirements. The CPDC software architecture is discussed along with model-based algorithm development and autocoding. Finally, CPDC calculated combustion parameters are compared with those from a well established combustion analysis system and thermodynamic simulations.
Technical Paper

Diagnosis Concept for Future Vehicle Electronic Systems

2004-10-18
2004-21-0010
As automotive electronic control systems continue to increase in usage and complexity, the challenges for developing automotive diagnostics also increase. Reduced development cycle times, the increased significance of diagnostics for safety critical systems, and the integration of vehicle systems across multiple control systems all add to the tasks of developing diagnostics for the automobiles of today and tomorrow. Addressing automotive diagnostics now requires the Tier 1 supplier to utilize a formal diagnostic development methodology. There are also opportunities for Tier 1 suppliers to add value by developing vehicle-level supervisory diagnostic strategies, in addition to subsystem and system-level diagnostic strategies. There is also a prospect to provide strategies and tools to enhance service at the vehicle level. This paper proposes an approach for Tier 1 suppliers to address diagnostic and service issues at the component, system, and vehicle level.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Technical Paper

E-85 Fuel Corrosivity: Effects on Port Fuel Injector Durability Performance

2007-10-29
2007-01-4072
A study was conducted to investigate the effects of commercial E-85 fuel properties on Port Fuel Injector (PFI) durability performance. E-85 corrosivity, not lubricity, was identified as the primary property affecting injector performance. Relatively high levels of water, chloride and organic acid contamination, detected in commercial E-85 fuels sampled in the U.S. in 2006, were the focus of the study. Analysis results and analytical techniques for determining contaminant levels in and corrosivity of commercial E-85 fuels are discussed. Studies were conducted with E-85 fuels formulated to represent worst-case field fuels. In addition to contamination with water, chloride and organic acids, fuels with various levels of a typical ethanol corrosion inhibitor were tested in the laboratory to measure the effects on E-85 corrosivity. The effects of these E-85 contaminants on injector durability performance were also evaluated.
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Technical Paper

Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems

2004-03-08
2004-01-1682
With the requirements for reducing the emissions and improving the fuel economy, the automotive companies are developing hybrid, 42 V and fuel cell vehicles. Power electronics is an enabling technology for the development of environmental friendly vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, the requirements of the power semiconductor devices and the criteria for selecting the power devices for various types of low emission vehicles are presented. A comparative study of the most commonly used power devices is presented. A brief review of the future power devices that would enhance the performance of the automotive power conversion systems is also presented.
Technical Paper

Fuel Economy Improvements through Improved Automatic Transmission Warmup - Stand Alone Oil to Air (OTA) Transmission Cooling Strategy with Thermostatic Cold Flow Bypass Valve

2001-05-14
2001-01-1760
The stand alone oil to air (OTA) transmission cooling strategy with thermostatic cold flow bypass valve has been shown to be an effective means of improving the warmup of an automatic transmission. Improving the system warmup rate of an automatic transmission significantly improves its efficiency by reducing losses resulting from extremely viscous transmission fluid and can allow for calibration changes that improve overall transmission performance. Improved transmission efficiency in turn allows for improved engine efficiency and performance. The improvements obtained from increased transmission and engine efficiency result in an overall increase in vehicle fuel economy. Fuel economy and consumption are important parameters considered by the vehicle manufacturer and the customer. Fuel economy can be considered as important as reliability and durability.
Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
X