Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

A 6-Speed Automatic Transmission Plant Dynamics Model for HIL Test Bench

2008-04-14
2008-01-0630
During the production controller and software development process, one critical step is the controller and software verification. There are various ways to perform this verification. One of the commonly used methods is to utilize an HIL (hardware-in-the-loop) test bench to emulate powertrain hardware for development and validation of powertrain controllers and software. A key piece of an HIL bench is the plant dynamics model used to emulate the external environment of a modern controller, such as engine (ECM), transmission (TCM) or powertrain controller (PCM), so that the algorithms and their software implementation can be exercised to confirm the desired results. This paper presents a 6-speed automatic transmission plant dynamics model development for hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The modeling method, model validation, and application in an HIL test environment are described in details.
Technical Paper

A Comparative Study of the Production Applications of Hybrid Electric Powertrains

2003-06-23
2003-01-2307
In this paper, a comparative study of the production applications of hybrid electric powertrains is presented. Vehicles studied include the Toyota Prius, Honda Insight, Toyota Estima, Toyota Crown, Honda Civic Hybrid, and Nissan Tino. The upcoming Ford Escape Hybrid and General Motors Parallel Hybrid Truck (PHT) will also be included, although advance information is limited. The goal of this paper is to look at what hybrid drivetrain architectures have actually been selected for production and what are the underlying details of these drivetrains. Since hybridizing a powertrain involves significant changes, the powertrain architectures are presented in diagram form, with analysis as to the similarities and advantages represented in these architectures. The specific hybrid functions used to save fuel are discussed. Peak power-to-weight ratio and degree of hybridization are plotted for the vehicles. System voltage versus electric power level are also plotted and analyzed.
Technical Paper

A Control System Methodology for Steer by Wire Systems

2004-03-08
2004-01-1106
Steer by Wire systems provide many benefits in terms of functionality, and at the same time present significant challenges too. Chief among them is to make sure that an acceptable steering feel is achieved. Various aspects of this subjective attribute will be defined mathematically. A control system that is architected specifically to meet these challenges is presented. Furthermore, the design is made such that it would be robust to tire and loading variations. Supporting vehicle data and model results are shown as needed.
Technical Paper

A Design Tool for Producing 3D Solid Models from Sketches

2004-03-08
2004-01-0482
A novel design tool that produces solid model geometry from computer-generated sketches was developed to dramatically increase the speed of component development. An understanding of component part break-up and section shape early in the design process can lead to earlier part design releases. The concept provides for a method to create 3-dimensional (3D) solid models from 2-dimensional (2D) digital image sketches. The traditional method of creating 3-dimensional surface models from sketches or images involves creation of typical sections and math surfaces by referencing the image only. There is no real use of the sketch within the math environment. An interior instrument panel and steering wheel is described as an example. The engineer begins with a 2-dimensional concept sketch or digital image. The sketch is scaled first by determining at least three known feature diameters.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

A Dynamic Model of Automotive Air Conditioning Systems

2005-04-11
2005-01-1884
A dynamic computer model of automotive air conditioning systems was developed. The model uses simulation software for the coding of 1-D heat transfer, thermodynamics, fluid flow, and control valves. The same software is used to model 3-D solid dynamics associated with mechanical mechanisms of the compressor. The dynamics of the entire AC system is thus simulated within the same software environment. The results will show the models potential applications in component and system design, calibration and control.
Technical Paper

A Filter Seal Model for Point Mobility Prediction of Air Induction Systems

2006-04-03
2006-01-1209
Virtual design validation of an air induction system (AIS) requires a proper finite element (FE) assembly model for various simulation based design tasks. The effect of the urethane air filter seal within an AIS assembly, however, still poses a technical challenge to the modeling of structural dynamic behaviors of the AIS product. In this paper, a filter seal model and its modeling approach for AIS assemblies are introduced, by utilizing the feature finite elements and empiric test data. A bushing element is used to model the unique nonlinear stiffness and damping properties of the urethane seal, as a function of seal orientation, preloading, temperature and excitation frequency, which are quantified based on the test data and empiric formula. Point mobility is used to character dynamic behaviors of an AIS structure under given loadings, as a transfer function in frequency domain.
Technical Paper

A Flexible Engine Control Architecture for Model-based Software Development

2007-04-16
2007-01-1623
The fierce competition and shifting consumer demands require automotive companies to be more efficient in all aspects of vehicle development and specifically in the area of embedded engine control system development. In order to reduce development cost, shorten time-to-market, and meet more stringent emission regulations without sacrificing quality, the increasingly complex control algorithms must be transportable and reusable. Within an efficient development process it is necessary that the algorithms can be seamlessly moved throughout different development stages and that they can be easily reused for different applications. In this paper, we propose a flexible engine control architecture that greatly boosts development efficiency.
Technical Paper

A Hardware-in-the-loop Test Bench for Production Transmission Controls Software Quality Validation

2007-04-16
2007-01-0502
Production software validation is critical during software development, allowing potential quality issues that could occur in the field to be minimized. By developing automated and repeatable software test methods, test cases can be created to validate targeted areas of the control software for confirmation of the expected results from software release to release. This is especially important when algorithm/software development timing is aggressive and the management of development activities in a global work environment requires high quality, and timely test results. This paper presents a hardware-in-the-loop (HIL) test bench for the validation of production transmission controls software. The powertrain model used within the HIL consists of an engine model and a detailed automatic transmission dynamics model. The model runs in an OPAL-RT TestDrive based HIL system.
Technical Paper

A Multi-hop Mobile Networking Test-bed for Telematics

2005-04-11
2005-01-1484
An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the real-world performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road.
Journal Article

A New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

2013-04-08
2013-01-0850
Accurate evaluation of vehicles' transient total power requirement helps achieving further improvements in vehicle fuel efficiency. When operated, the air-conditioning (A/C) system is the largest auxiliary load on a vehicle, therefore accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation models, such as "Autonomie," have been used by OEMs to evaluate vehicles' energy performance. However, the load from the A/C system on the engine or on the energy storage system has not always been modeled in sufficient detail. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software MATLAB/Simulink® is frequently used by vehicle controls engineers to develop new and more efficient vehicle energy system controls.
Technical Paper

A Reusable Control System Architecture for Hybrid Powertrains

2002-10-21
2002-01-2808
System integration is the path to successful entry of hybrid electric vehicle (HEV) technology into the marketplace. A modular solution capable of meeting varying customer requirements is needed. The controller must possess a flexible hierarchical architecture that insures cross-platform compatibility and provides adaptability for various engine, motor, transmission, and battery configurations. A hybrid powertrain supervisory controller (PSC) has been designed for an advanced parallel-type HEV prototype, which uses a continuously variable transmission (CVT). The controller schedules torque commands for the engine and motor and chooses the transmission ratio to meet driver demanded acceleration. The controller is organized around a state machine, which determines how best to employ powertrain components to satisfy the driver while maximizing fuel economy.
Technical Paper

A Scalable Engine Management System Architecture for Motorcycle/Small-Vehicle Application

2008-09-09
2008-32-0054
This paper gives an overview of a scalable engine management system architecture for motorcycle and other small engine based vehicle applications. The system can accommodate any engine sizes and up to four cylinders. The architecture incorporates advanced functionalities such as oxygen sensing, closed loop fueling, wall-wetting compensation, purge control, start & idle control and deceleration fuel cut-off. Additionally, a number of vehicle-related controls are integrated in the system. Diagnostic and safety related features have also been incorporated with limp-home capability. The software architecture is compatible with different hardware solutions. The system has been implemented in several OEM vehicles around the globe and meets EURO-3 emission requirements.
Technical Paper

A Statistical Approach for Real-Time Prognosis of Safety-Critical Vehicle Systems

2007-04-16
2007-01-1497
The paper describes the development of a vehicle stability indicator based on the correlation between various current vehicle chassis sensors such as hand wheel angle, yaw rate and lateral acceleration. In general, there is a correlation between various pairs of sensor signals when the vehicle operation is linear and stable and a lack of correlation when the vehicle is becoming unstable or operating in a nonlinear region. The paper outlines one potential embodiment of the technology that makes use of the Mahalanobis distance metric to assess the degree of correlation among the sensor signals. With this approach a single scalar metric provides an accurate indication of vehicle stability.
Technical Paper

A Strategy to Partition Crash Data to Define Active-Safety Sensors and Product Solutions

2008-10-20
2008-21-0032
Both Crash-Avoidance and Pre-Crash active safety technologies are being developed to help reduce the number of crashes and minimize the severity of crashes. The root basis in the development of new and improved active safety technologies always begins with gaining further knowledge about crash kinds and causes. The dynamics of crashes are quite complex. The evolving precursor crash situation initiated in the Crash-Avoidance time-period will vary from the imminent crash situation in the Pre-Crash time-period. As such, in order to develop the appropriate requirements for both crash-avoidance and pre-crash technologies, they must be analyzed from their respective crash data. A data-driven methodology process has been developed which partitions the field data with a perspective to crash-avoidance and pre-crash.
Technical Paper

A Systematic Experimental Investigation of Pd-Based Light-Off Catalysts

2005-10-24
2005-01-3848
Close-coupled or manifold catalysts have been extensively employed to reduce emissions during cold start by achieving quick catalyst light-off. These catalysts must have good thermal durability, high intrinsic light-off activity and high HC/CO/NOx conversions at high temperature and flow conditions. A number of studies have been dedicated to engine control, manifold design and converter optimization to reduce cold start emissions. The current paper focuses on the effect of catalyst design parameters and their performance response to different engine operating conditions. Key design parameters such as catalyst formulation (CeO2 vs. non CeO2), precious metal loading and composition (Pd vs. Pd/Rh), washcoat loading, catalyst thermal mass, substrate properties and key application (in use) parameters such as catalyst aging, exhaust A/F ratio, A/F ratio modulation, exhaust temperature, temperature rise rate and exhaust flow rate were studied on engine dynamometers in a systematic manner.
Technical Paper

A Three-Pillar Framework for Model-Based Engine Control System Development

2007-04-16
2007-01-1624
This paper presents a comprehensive Matlab/Simulink-based framework that affords a rapid, systematic, and efficient engine control system development process including automated code generation. The proposed framework hinges on three essential pillars: 1 ) an accurate model for the target engine, 2) a toolset for systematic control design, and 3) a modular system architecture that enhances feature reusability and rapid algorithm deployment. The proposed framework promotes systematic model-based algorithm development and validation in virtual reality. Within this context, the framework affords integration and evaluation of the entire control system at an early development stage, seamless transitions across inherently incompatible product development stages, and rapid code generation for production target hardware.
Technical Paper

A Vehicle-to-Vehicle Communication Database for Infrastructureless Routing

2008-04-14
2008-01-1254
Traffic engineers use time-of-day travel time databases to characterize normal travel times on roads. This information is used by traffic management centers together with information from sensors in the highway to identify problems and to make alternate route recommendations. In this paper, the travel time database concept is extended to a vehicle-to-vehicle communications network for traffic and safety information, wherein the travel time database is generated and stored by vehicles in the network, and used by the vehicles to identify abnormal traffic conditions. This infrastructure-free approach is attractive due to the potential to eliminate highway sensor and sensor maintenance costs, which are major factors that limit the growth of traffic information beyond major roadways in urban regions. Initial work indicates that database storage requirements in the vehicle should be manageable.
Technical Paper

Accelerated Life Cycle Development for Electronic Throttle Control Software using Model-Based/Auto-Code Technology

2004-03-08
2004-01-0276
The purpose of this paper is to demonstrate our success in taking advantage of model-based development tools and auto-code technology to accelerate the typical life cycle development of powertrain software. In particular, we applied the technology as a clean sheet approach to Visteon's third generation Electronic Throttle Control system. In the process of applying model-based development and 100% auto-code, we identified various pitfalls and created solutions to overcome the gap between technology and development process during each phase of the entire software development life cycle. We will share our lessons learned during the requirement, design, implementation, and validation stages.
X