Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Characterization of SACI Combustion for Use in Model Based Controls

2014-04-01
2014-01-1289
Spark Assisted Compression Ignition (SACI) aims to increase the load limit of homogeneous charge compression ignition (HCCI) engines, enabling the benefits of dilute combustion over a larger engine operation range. Compared to HCCI, SACI exhibits higher cyclic variation of several combustion features. Due to the necessity of control of the timing of the auto-ignition event during SACI operation, a suitable characterization of the combustion at a given set of actuator inputs is required to enable robust model-based controls of combustion. This paper investigates statistical approaches to analyze in-cylinder pressure data of SACI in order to find a real or reconstructed cycle that will represent the important characteristics of combustion. To determine the representativeness of such a cycle, several combustion characteristics were compared that could serve as operational limits.
Journal Article

The Effect of EGR Dilution on the Heat Release Rates in Boosted Spark-Assisted Compression Ignition (SACI) Engines

2020-04-14
2020-01-1134
This paper presents an experimental investigation of the impact of EGR dilution on the tradeoff between flame and end-gas autoignition heat release in a Spark-Assisted Compression Ignition (SACI) combustion engine. The mixture was maintained stoichiometric and fuel-to-charge equivalence ratio (ϕ′) was controlled by varying the EGR dilution level at constant engine speed. Under all conditions investigated, end-gas autoignition timing was maintained constant by modulating the mixture temperature and spark timing. Experiments at constant intake pressure and constant spark timing showed that as ϕ′ is increased, lower mixture temperatures are required to match end-gas autoignition timing. Higher ϕ′ mixtures exhibited faster initial flame burn rates, which were attributed to the higher laminar flame speeds immediately after spark timing and their effect on the overall turbulent burning velocity.
X