Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New Generation of Diesel Oxidation Catalysts

1992-10-01
922330
An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Journal Article

Application of a Method for the Estimation of Transmissivity of Transparent Surfaces to Exterior Lighting Applications

2020-04-14
2020-01-1197
The paper derives a practical method for analysing transmission rates for light passing through transparent media like outer lenses of head lamps and tail lamps. It is shown that only two geometric parameters are needed to do the analysis, as are the angle of incidence measured to the surface normal and the surface normal itself. The surface is needed to be described mathematically - whether analytical (CAD) or discretised (FE or CFD), but no thickness is necessary. Two fields of application will be shown. The first one is the estimation of light performance or module position of head lamps in the early design process. A second one addresses the optimal time to doing outdoor weathering tests with respect to maximal impact of solar irradiation.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Code Coupling, a New Approach to Enhance CFD Analysis of Engines

2000-03-06
2000-01-0660
A new method for the analysis of the gas flow in an internal combustion engine has been developed. It is based on the interactive coupling between commercially available three (STAR-CD) and one dimensional (PROMO) fluid dynamics codes. With this method the detailed transient flow distribution for any engine component of interest can be calculated taking into account the overall gas dynamic interaction with other engine components. The underlying physics and numerics are outlined. A description of the coupling procedure ensuring proper communication between the two computer codes is given. Also addressed is the averaging procedure adopted at the 3D boundaries, including the influence of the 1D/3D interface placement. A first application of this new method is presented, in which the gas flow in a turbo-charged DI-diesel-engine is simulated.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Development of a Rigid Passenger Safety Compartment Made of Composite Material-Application for Front Door Frames

1986-03-01
860278
Based an extensive preparatory work and analyses, suggestions have been drawn up with regard to solutions for front door frames in the following regions:- door hinge mountings, seat belt anchorage mountings of B pillars, cross sections for the top of A pillars. At the same time as the design work, FEM calculations should be carried out to ensure optimization of the concepts. Economy reasons and experiences in production runs point towards a very strong fibre glass-reinforced door frames manufacutred in the SMC procress. The complete door frame is examined in comparison with geometrically similar sheet metal parts on a test frame and in the vehicle.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

1995-10-01
952356
The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Experimental Investigation of Droplet Formation and Droplet Sizes Behind a Side Mirror

2022-12-27
2022-01-5107
The investigation of vehicle soiling by improvement of vehicle parts to optimize the surrounding airflow is of great importance not only because of the visibility through windows and at mirrors but also the functionality of different types of sensors (camera, lidar, radars, etc.) for the driver assistance systems and especially for autonomous driving vehicles has to be guaranteed. These investigations and corresponding developments ideally take place in the early vehicle development process since later changes are difficult to apply in the vehicle production process for many reasons. Vehicle soiling is divided into foreign soiling and self-soiling with respect to the source of the soiling water, e.g., direct rain impact, swirled (dirty) water of other road users and own rotating wheels. The investigations of the soiling behavior of vehicles were performed experimentally in a wind tunnel and street tests.
Technical Paper

Experimental Investigation of the Droplet Field of a Rotating Vehicle Tyre

2019-06-18
2019-01-5068
The consideration of vehicle soiling in the development process becomes ever more important because of the increasing customer demands on current vehicles and the increased use of camera and sensor systems due to autonomous driving. In the process of self-soiling, a soil-water mixture is whirled up by the rotation of the car’s own wheels and deposits on the vehicle surface. The validation of the soiling characteristics in vehicle development usually takes place in an experimental manner, but is increasingly supported by numerical simulations. The droplet field at the tyre has been investigated several times in the past. However, there are no published information regarding the physical background of the droplet formation process and the absolute droplet sizes considering the position at the tyre and the behaviour at different velocities.
Technical Paper

Feasible Steps towards Improved Crash Compatibility

2004-03-08
2004-01-1167
Compatibility has been a research issue for many years now. It has gained more importance recently due to significant improvements in primary and secondary safety. Using a rigorous approach, combining accident research and theoretical scientific considerations, measures to improve vehicle-vehicle compatibility, with an emphasis on feasibility, were discussed. German accident research statistics showed that frontal impacts are of higher statistical significance than side impacts. Based on this and the high potential for improvement due high available deformation energy, the frontal impact configuration was identified as the most appropriate collision mode for addressing the compatibility issue. In side impacts, accident avoidance was identified as the most feasible and sensible measure. For frontal vehicle-vehicle impacts, both trucks and passenger cars were identified as opponents of high statistical significance.
Technical Paper

Fuel/Air-Ratio Measurements in Direct Injection Gasoline Sprays Using 1D Raman Scattering

2000-03-06
2000-01-0244
One dimensional Spontaneous Raman Scattering measurements (RS) have been performed in a spray (standard gasoline, one-component and multi-component model fuels) which was operated in a high-temperature, high-pressure chamber, so that realistic engine conditions have been simulated. The present work investigates under what conditions 1D-RS can be employed for fuel/air-ratio measurements in realistic DI gasoline sprays. The distance from the spray axis has been determined, til that, coming from the outside, quantitative Raman measurement are possible. The equivalence ratio has been quantified for the one component fuel close to the spray. It turns out that the measurement error depends strongly on the type of fuel. These problems are caused by the PAH (polycyclic aromatic hydrocarbon) content of the fuel, which leads to interfering laser-induced fluorescence signals.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

In-Cylinder Measurements and Analysis on Fundamental Cold Start and Warm-up Phenomena of SI Engines

1995-10-01
952394
A recently developed Laser Raman Scattering system was applied to measure the in-cylinder air-fuel ratio and the residual gas content (via the water content) of the charge simultaneously in a firing spark-ignition engine during cold start and warm-up. It is the main objective of this work to elucidate the origin of misfires and the necessity to over-fuel at cool ambient temperatures. It turns out that the overall air-fuel ratio and residual gas content (in particular the residual water content) of the charge appear to be the most important parameters for the occurrence of misfires (without appropriate fuel enrichment), i.e., the engine behaviour from cycle to cycle becomes rather predictable on the basis of these data. An alternative explanation for the necessity to over-fuel is given.
X