Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A New Generation of Diesel Oxidation Catalysts

1992-10-01
922330
An overview is given on the state of the art of a new catalytic exhaust gas aftertreatment device for diesel engines. The function of a precious metal based, flow-through type diesel oxidation catalyst is explained. Much attention is paid to the durability of the diesel oxidation catalyst and especially to the influence of poisoning elements on the catalytic activity. Detailed data on the interaction of poisoning elements such as sulfur, zinc and phosphorus with the catalytic active sites are given. Finally it is demonstrated that it is possible to meet the stringent emission standards for diesel passenger cars in Europe with a new catalyst generation over 80.000 km AMA aging.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

A Study of the Thermochemical Conditions in the Exhaust Manifold Using Secondary Air in a 2.0 L Engine

2002-05-06
2002-01-1676
The California LEV1 II program will be introduced in the year 2003 and requires a further reduction of the exhaust emissions of passenger cars. The cold start emissions represent the main part of the total emissions of the FTP2-Cycle. Cold start emissions can be efficiently reduced by injecting secondary air (SA) in the exhaust port making compliance with the most stringent standards possible. The thermochemical conditions (mixing rate and temperature of secondary air and exhaust gas, exhaust gas composition, etc) prevailing in the exhaust system are described in this paper. This provides knowledge of the conditions for auto ignition of the mixture within the exhaust manifold. The thus established exothermal reaction (exhaust gas post-combustion) results in a shorter time to light-off temperature of the catalyst. The mechanisms of this combustion are studied at different engine idle conditions.
Technical Paper

Benefits of GTL Fuel in Vehicles Equipped with Diesel Particulate Filters

2009-06-15
2009-01-1934
Synthetic fuels are expected to play an important role for future mobility, because they can be introduced seamlessly alongside conventional fuels without the need for new infrastructure. Thus, understanding the interaction of GTL fuels with modern engines, and aftertreatment systems, is important. The current study investigates potential benefits of GTL fuel in respect of diesel particulate filters (DPF). Experiments were conducted on a Euro 4 TDI engine, comparing the DPF response to two different fuels, normal diesel and GTL fuel. The investigation focused on the accumulation and regeneration behavior of the DPF. Results indicated that GTL fuel reduced particulate formation to such an extent that the regeneration cycle was significantly elongated, by ∼70% compared with conventional diesel. Thus, the engine could operate for this increased time before the DPF reached maximum load and regeneration was needed.
Technical Paper

Brake Judder - Analysis of the Excitation and Transmission Mechanism within the Coupled System Brake, Chassis and Steering System

2005-10-09
2005-01-3916
The prevention of any brake noise or brake-induced body vibrations is a key development target firmly integrated in the car development process. Emphasis is placed here on disc brake judder that is attributable to thickness variations in the disc. These deviations from the ideal plane surface can be caused either by wear and corrosion or by thermal stresses (changes within the microstructure of the disc material). They are termed “cold judder” and “thermal judder” respectively. During braking, possible vibration excitation passes through a wide frequency band due to the coupling between the judder frequency and the wheel rotational speed, and thus, resonant frequencies of many vehicle components can be excited. This includes wheel suspension components and the steering column. In this paper, it is reported on extensive investigations into the topic of “cold judder”.
Technical Paper

Catalytic NOx Reduction in Net Oxidizing Exhaust Gas

1990-02-01
900496
Several different possibilities will be described and discussed on the processes of reducing NOx in lean-burn gasoline and diesel engines. In-company studies were conducted on zeolitic catalysts. With lean-burn spark-ignition engines, hydrocarbons in the exhaust gas act as a reducing agent. In stationary conditions at λ = 1.2, NOx conversion rates of approx. 45 % were achieved. With diesel engines, the only promising variant is SCR technology using urea as a reducing agent. The remaining problems are still the low space velocity and the narrow temperature window of the catalyst. The production of reaction products and secondary reactions of urea with other components in the diesel exhaust gas are still unclarified.
Technical Paper

Comparison of Different EGR Solutions

2008-04-14
2008-01-0206
This paper compares 4 different EGR systems by means of simulation in GT-Power. The demands of optimum massive EGR and fresh air rates were based on experimental results. The experimental data were used to calibrate the model and ROHR, in particular. The main aim was to investigate the influence of pumping work on engine and vehicle fuel consumption (thus CO2 production) in different EGR layouts using optimum VG turbine control. These EGR systems differ in the source of pressure drop between the exhaust and intake pipes. Firstly, the engine settings were optimized under steady operation - BSFC was minimized while taking into account both the required EGR rate and fresh air mass flow. Secondly, transient simulations (NEDC cycle) were carried out - a full engine model was used to obtain detailed information on important parameters. The study shows the necessity to use natural pressure differences or renewable pressure losses if reasonable fuel consumption is to be achieved.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Effect of Cell Geometry on Emissions Performance of Ceramic Catalytic Converters

2002-03-04
2002-01-0354
More stringent emissions regulations, space limitations for catalytic converters in modern automotive applications, and new engine technologies constitute design challenges for today's engineers. In that context high cell density thinwall and ultrathinwall ceramic substrates have been designed into advanced catalytic converters. Whereas the majority of these substrates have a square cell geometry, a potential for further emissions improvement has been predicted for hexagonal cell structures. In order to verify these predictions, a ceramic substrate has been developed combining the features of high cell density, ultrathin cell walls, and hexagonal cell structure. Based on modeling data, the actual cell density and wall thickness of the hexagonal cell substrate will be defined. The performance of that substrate will be assessed by comparing experimental emissions results using two modern Volkswagen engines.
Technical Paper

Effect of EGR on Spray Development, Combustion and Emissions in a 1.9L Direct-Injection Diesel Engine

1995-10-01
952356
The spray development, combustion and emissions in a 1.9L optical, four-cylinder, direct-injection diesel engine were investigated by means of pressure analysis, high-speed cinematography, the two-colour method and exhaust gas analysis for various levels of exhaust gas recirculation (EGR), three EGR temperatures (uncontrolled, hot and cold) and three fuels (diesel, n-heptane and a two-component fuel 7D3N). Engine operating conditions included 1000 rpm/idle and 2000 rpm/2bar with EGR-rates ranging from 0 to 70%. Independent of rate, EGR was found to have a very small effect on spray angle and spray tip penetration but the auto-ignition sites seemed to increase in size and number at higher EGR-rates with associated reduction in the flame luminosity and flame temperature, by, say, 100K at 50% EGR.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

European Diesel Research IDEA-Experimental Results from DI Diesel Engine Investigations

1994-10-01
941954
Within the European research programme IDEA (Integrated Diesel European Action), detailed experimental and theoretical studies of the fundamental phenomena of the Diesel engine like flow, injection, mixture formation, auto-ignition, combustion and pollutant formation were carried out to improve knowledge and to set up models for a simulation code. Because this basic research of the Diesel combustion process is very complex and cost intensive, it was carried out jointly by the JRC (Joint Research Committee), an association of European car manufacturers (Fiat, Peugeot SA, Renault, Volvo and Volkswagen). The activities were also subsidized by the Commission of the European Communities and the Swedish National Board of Technical Development. The results of the research work will support the design of even more efficient engines and the further reduction of soot and NOx emissions and will also enable the companies to reduce time and cost in developing new engines.
Technical Paper

Evaluation of an UV-Analyzer for the Simultaneous NO and NO2 Vehicle Emission Measurement

2004-06-08
2004-01-1830
For the measurement of NO and NO2 the CLD-analyzer (chemiluminescense detector) has been used for more than twenty-five years. The disadvantage of the CLD is that NO can be measured only. To obtain total NOX (NO+NO2) the exhaust gas sample has to flow through a catalytic converter, which reduces NO2 to NO. The converter has a efficiency between 90 and 100%. For precise NO and NO2 values it is an advantage to analyze NO and NO2 directly. This paper describes a new UV NOX-analyzer for the simultaneous measurement of NO and NO2. Two different configurations, for high and low concentrations, eg. CVS-bag analysis are presented. The performance of the analyzers is documented in comparison to the UV-RAS analyzer with converter for NOX [1] and the conventional CLD-analyzer. The benefits of the new analyzer compared to analyzers equipped with a converter are given in detailed test results.
Technical Paper

Exhaust Gas Aftertreatment of Volkswagen FSI Fuel Stratified Injection Engines

2002-03-04
2002-01-0346
For substantial reduction of fuel consumption of their vehicle fleet, Volkswagen AG has decided to develop spark-ignition engines with direct fuel injection. To launch this new engine concept with stratified lean operation mode while at the same time meeting the stringent EU IV emission standards, it was necessary to develop a suitable exhaust gas aftertreatment system. This was achieved as part of an intensive co-operation between Volkswagen AG and OMG, formerly dmc2 Degussa Metals Catalysts Cerdec AG. The paper describes the demands for exhaust gas aftertreatment due to lean burn operation. In addition the main development steps of the exhaust gas aftertreatment system for Volkswagen FSI engines and catalyst durability over vehicle lifetime are discussed. Focus is laid on the catalyst system design and coating variations. Volkswagen developed a new closed-loop emission control management system which uses NOx-sensor signals for the first time worldwide.
Technical Paper

Experimental Approach to Optimize Catalyst Flow Uniformity

2000-03-06
2000-01-0865
A uniform flow distribution at converter inlet is one of the fundamental requirements to meet high catalytic efficiency. Commonly used tools for optimization of the inlet flow distribution are flow measurements as well as CFD analysis. This paper puts emphasis on the experimental procedures and results. The interaction of flow measurements and CFD is outlined. The exhaust gas flow is transient, compressible and hot, making in-situ flow measurements very complex. On the other hand, to utilize the advantages of flow testing at steady-state and cold conditions the significance of these results has to be verified first. CFD analysis under different boundary conditions prove that - in a first approach - the flow situation can be regarded as a sequence of successive, steady-state situations. Using the Reynolds analogy a formula for the steady-state, cold test mass flow is derived, taking into account the cylinder displacement and the rated speed.
Technical Paper

Experimental Investigation of the Droplet Field of a Rotating Vehicle Tyre

2019-06-18
2019-01-5068
The consideration of vehicle soiling in the development process becomes ever more important because of the increasing customer demands on current vehicles and the increased use of camera and sensor systems due to autonomous driving. In the process of self-soiling, a soil-water mixture is whirled up by the rotation of the car’s own wheels and deposits on the vehicle surface. The validation of the soiling characteristics in vehicle development usually takes place in an experimental manner, but is increasingly supported by numerical simulations. The droplet field at the tyre has been investigated several times in the past. However, there are no published information regarding the physical background of the droplet formation process and the absolute droplet sizes considering the position at the tyre and the behaviour at different velocities.
Technical Paper

Experimental Investigation of the Primary Spray Development of GDI Injectors for Different Nozzle Geometries

2015-04-14
2015-01-0911
The optimization of the mixture formation represents great potential to decrease fuel consumption and emissions of spark-ignition engines. The injector and the nozzle are of major importance in this concern. In order to adjust the nozzle geometry according to the requirements an understanding of the physical transactions in the fuel spray is essential. In particular, the primary spray break-up is still described inadequately due to the difficult accessibility with optical measuring instruments. This paper presents a methodology for the characterization of the nozzle-near spray development, which substantially influences the entire spray shape. Single hole injectors of the gasoline direct injection (GDI) with different nozzle hole geometries have been investigated in a high pressure chamber by using the MIE scattering technique. To examine the spray very close to the nozzle exit a long-distance microscope in combination with a Nd:YAG-laser was used.
Technical Paper

Experimental and Numerical Simulation of the Flow Around the Brake Disk of a Scaled-Down VW Phaeton Model

2007-10-07
2007-01-3949
In this paper, the experimental and numerical simulation of the flow field in the simplified front wheel arch of a scaled-down VW Phaeton half-model (scale 1:2,5) is presented. For wind tunnel experiments a realistic, rotating wheel model with plexiglass treads (PMMA) was designed. The construction allowed for detailed measurements of the flow field directly at the brake disk by means of the stereoscopic Particle Image Velocimetry (PIV) technique. The formation of the flow structures and the resulting three-dimensional boundary layers on the brake disk are analyzed. Furthermore, the oncoming air flow towards the brake disk and the flow field near the wheel rim openings were investigated. The experimental data is compared with results of Computational Fluid Dynamics (CFD) simulations using the Lattice-Boltzmann based solver Powerflow. The validation shows the potential and the limitations of the numerical approach and indicates areas of further improvement.
Technical Paper

Fuel/Air-Ratio Measurements in Direct Injection Gasoline Sprays Using 1D Raman Scattering

2000-03-06
2000-01-0244
One dimensional Spontaneous Raman Scattering measurements (RS) have been performed in a spray (standard gasoline, one-component and multi-component model fuels) which was operated in a high-temperature, high-pressure chamber, so that realistic engine conditions have been simulated. The present work investigates under what conditions 1D-RS can be employed for fuel/air-ratio measurements in realistic DI gasoline sprays. The distance from the spray axis has been determined, til that, coming from the outside, quantitative Raman measurement are possible. The equivalence ratio has been quantified for the one component fuel close to the spray. It turns out that the measurement error depends strongly on the type of fuel. These problems are caused by the PAH (polycyclic aromatic hydrocarbon) content of the fuel, which leads to interfering laser-induced fluorescence signals.
X