Refine Your Search

Topic

Search Results

Technical Paper

A Method for Estimating the Benefit of Autonomous Braking Systems Using Traffic Accident Data

2006-04-03
2006-01-0473
One way of avoiding crashes or mitigating the consequences of a crash is to apply an autonomous braking system. Quantifying the benefit of such a system in terms of injury reduction is a challenge. At the same time it is a fundamental input into the vehicle development process. This paper describes a method to estimate the effectiveness of reducing speed prior to impact. A holistic view of quantifying the benefit is presented, based on existing real life crash data and basic dynamic theories. It involves a systematic and new way of examining accident data in order to extract information concerning pre-crash situations. One problem area when implementing collision mitigation systems is being able to achieve sufficient target discrimination. The results from the case study highlight frontal impact situations from real world accident data that have the greatest potential in terms of improving accident outcome.
Journal Article

A Study on Acoustical Time-Domain Two-Ports Based on Digital Filters with Application to Automotive Air Intake Systems

2011-05-17
2011-01-1522
Analysis of pressure pulsations in ducts is an active research field within the automotive industry. The fluid dynamics and the wave transmission properties of internal combustion (IC) engine intake and exhaust systems contribute to the energy efficiency of the engines and are hence important for the final amount of CO₂ that is emitted from the vehicles. Sound waves, originating from the pressure pulses caused by the in- and outflow at the engine valves, are transmitted through the intake and exhaust system and are an important cause of noise pollution from road traffic at low speeds. Reliable prediction methods are of major importance to enable effective optimization of gas exchange systems. The use of nonlinear one-dimensional (1D) gas dynamics simulation software packages is widespread within the automotive industry. These time-domain codes are mainly used to predict engine performance parameters such as output torque and power but can also give estimates of radiated orifice noise.
Technical Paper

An Investigation of the Coupling Between the Passenger Compartment and the Trunk in a Sedan

2007-05-15
2007-01-2356
The low frequency acoustic response of the passenger compartment (cavity) in sedans is considered with respect to the coupling between the cavity and the trunk. Both acoustic (via holes in the parcel shelf or behind the backrest of the rear seat), and structural (via the parcel shelf itself, or the panel of the backrest) mechanisms are investigated by both test and CAE. It is found that the peaks in acoustic response of the cavity at low frequencies are due to both acoustic and structural phenomena. However, the acoustic ones can be effectively blocked by proper design of the trim. Recommendations concerning modeling of acoustic effects in sedans are formulated.
Technical Paper

CAE Support to Vehicle Audio Installation Issues

2020-09-30
2020-01-1575
Audio CAE is an emerging area of interest for vehicle OEMs. Questions regarding early stages of the vehicle design, like choosing the possible positions for speakers, deciding the installation details that can influence the visual design, and integration of the low frequency speakers with the body & closures structure, are of interest. Therefore, at VCC, the development of the CAE methodology for audio applications has been undertaken. The key to all CAE applications is the loudspeaker model made available in the vibro-acoustic software used within the company. Such a model has been developed, implemented and verified in different frequency ranges and different applications. The applications can be divided into the low frequency ones (concerning the installation of woofers and subwoofers), and the middle/high frequency ones (concerning the installation of midrange and tweeter speakers). In the case of the woofer, it is the interaction with the body vibration that is of interest.
Journal Article

Coupling a Passive Sensor Manikin with a Human Thermal Comfort Model to Predict Human Perception in Transient and Asymmetric Environments

2017-03-28
2017-01-0178
Passive sensor (HVAC) manikins have been developed to obtain high-resolution measurements of environmental conditions across a representative human body form. These manikins incorporate numerous sensors that measure air velocity, air temperature, radiant heat flux, and relative humidity. The effect of a vehicle’s climate control system on occupant comfort can be characterized from the data collected by an HVAC manikin. Equivalent homogeneous temperature (EHT) is often used as a first step in a cabin comfort analysis, particularly since it reduces a large data set to a single intuitive number. However, the applicability of the EHT for thermal comfort assessment is limited since it does not account for human homeostasis, i.e., that the human body actively counter-balances heat flow with the environment to maintain a constant core temperature. For this reason, a thermo-physiological human model is required to accurately simulate the body’s dynamic response to a changing environment.
Technical Paper

Decision Making for Collision Avoidance Systems

2002-03-04
2002-01-0403
Driver errors cause a majority of all car accidents. Forward collision avoidance systems aim at avoiding, or at least mitigating, host vehicle frontal collisions, of which rear-end collisions are one of the most common. This is done by either warning the driver or braking or steering away, respectively, where each action requires its own considerations and design. We here focus on forward collision by braking, and present a general method for calculating the risk for collision. A brake maneuver is activated to mitigate the accident when the probability of collision is one, taking all driver actions into considerations. We describe results from a simulation study using a large number of scenarios, created from extensive accident statistics. We also show some results from an implementation of a forward collision avoidance system in a Volvo V70. The system has been tested in real traffic, and in collision scenarios (with an inflatable car) showing promising results.
Technical Paper

Development and Validation of Coolant Temperature and Cooling Air Flow CFD Simulations at Volvo Cars

2004-03-08
2004-01-0051
This paper describes the development of a robust and accurate method to model one-phase heat exchangers in complete vehicle air flow simulations along with a comprehensive comparison of EFD and CFD results. The comparison shows that the inlet radiator coolant temperatures obtained with CFD were within ±4°C of the experimental data with a trend in the differences being dependent on the car speed. The relative differences in cooling air mass flow rates increase with increasing car speed, with CFD values generally higher than EFD. From the investigation, the conclusion is that the methodology and modeling technique presented offer an accurate tool for concept and system solutions on the front end design, cooling package and fan. Care must be taken in order to provide the best possible boundary conditions paying particular attention to the heat losses in the engine, performance data for the radiator and fan characteristics.
Technical Paper

Development of a Haptic Intervention System for Unintended Lane Departure

2003-03-03
2003-01-0282
Many accidents are road departures because of the drivers' lack of attention. This is in many cases due to distraction, drowsiness or intoxication. The Haptic Lane Departure Warning System described here is intended as an active safety system, thus aiming at decreasing the amount of unwanted lane departures. The challenge in the development of such kinds of functions lies in the determination of dangerous situations and the design of appropriate warning/intervention strategies. The system is intended to go unnoticed with the driver and intervenes only in instances where the driver mismanages steering control. Unlike systems which issue an audible sound, the type of warning is a tactile feedback via the steering wheel. This torque is designed in a way that it communicates to the driver the appropriate steering wheel angle required in order to come back in lane.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Drag and Dirt Deposition Mechanisms of External Rear View Mirrors and Techniques Used for Optimisation

2000-03-06
2000-01-0486
This paper gives details of the drag and dirt deposition mechanisms related to rear view mirrors. The major design parameters affecting mirror-generated drag and dirt deposition are described. A detailed analysis of the mirror noise properties is not covered for reasons of brevity. A range of test methods is also described which can be successfully used in the mirror optimisation process. The detailed drag breakdown of several rear view mirrors has been made by use of a combination of balance and pressure measurements. The drag breakdown gives an insight into the drag mechanisms and identifies the critical geometry parameters. It is concluded that the relatively high level of drag experienced by some of today's mirrors is primarily the result of premature tip separation and/or an unnecessarily large mirror foot. A level of drag close to the minimum possible, for a given mirror glass area, can be achieved by optimisation of the tip and foot areas.
Technical Paper

ECU-Less: State of the Art

2023-04-11
2023-01-0916
Most OEMs are shifting their strategy and way of thinking regarding ECUs. This, in combination with the electrification of vehicles and the shift towards software-based companies (car as a device), implies one of the biggest paradigm changes in automotive history. On the other hand, despite the current struggles, remarkable advances have been made in electronic technology during the past few years. These developments have opened a door to very promising enabling technology, with exterior lighting as a main target market. These circumstances seem to have created a perfect storm leading to new strategies for electronic control and driving for (front and rear) exterior lighting. We, at our company, have investigated the enabling technology, challenges, and benefits of this emerging exterior lighting approach, that we call ‘ECU-Less’.
Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

European Side-markers Effect on Traffic Safety

1999-03-01
1999-01-0091
In 1993 new European legislation regarding side-markers for passenger cars became effective. Volvo requested the TNO-Human Factors Research Institute (HFRI) to investigate the possible safety benefit of this European side-markers configuration. A test panel at TNO- HFRI was used to determine the difference in response time and detection error of drivers, confronted with slides of vehicles with and without the mentioned new vehicle side-marker configuration in several visibility conditions, crossing illumination and different vehicle approach angles. The investigation showed a significant faster vehicle recognition with less detection errors in case the approaching car was equipped with the bright amber side-markers. This improved vehicle conspicuity can be a benefit in crash avoidance, especially when the driver approaches a crossing with complex light environment and reduced visibility.
Technical Paper

Evaluating a Vehicle Climate Control System with a Passive Sensor Manikin coupled with a Thermal Comfort Model

2018-04-03
2018-01-0065
In a previous study, a passive sensor (HVAC) manikin coupled with a human thermal model was used to predict the thermal comfort of human test participants. The manikin was positioned among the test participants while they were collectively exposed to a mild transient heat up within a thermally asymmetric chamber. Ambient conditions were measured using the HVAC manikin’s distributed sensor system, which measures air velocity, air temperature, radiant heat flux, and relative humidity. These measurements were supplied as input to a human thermal model to predict thermophysiological response and subsequently thermal sensation and comfort. The model predictions were shown to accurately reproduce the group trends and the “time to comfort” at which a transition occurred from a state of thermal discomfort to comfort. In the current study, the effectiveness of using a coupled HVAC manikin-model system to evaluate a vehicle climate control system was investigated.
Technical Paper

Evaluation of Hazard Identification Methods in the Automotive Domain

2006-10-16
2006-21-0045
Many automotive electronic systems must be developed using a safety process. A preliminary hazard analysis is a first and an important step in such a process. This experimental study evaluates two methods for hazard identification using an electrical steering column lock system. Both methods are found to be applicable for hazard identification in an automotive context. It is also concluded that the induction with the failure modes method is less time consuming and easier to use than the method based on induction with generic low level hazards. Further, two proposals are presented to improve efficiency and consistency, reuse of generic hazards by component profiles and a domain specific catalogue of vehicle phases.
Technical Paper

Fast and economic stiffness evaluation of mechanical joints

2003-10-27
2003-01-2751
Car body structures and the joints between beam members have a great impact on global vehicle stiffness. With the method presented in this paper it is possible to experimentally assess the stiffness of joints by a robust and economic means. The stiffness of a beam can easily be found experimentally just by cutting it in two and using the cross-sections to calculate the polar moment of inertia. When it comes to a joint, there are no formulae or explicit expressions describing its behavior. Therefore, measurement of its mechanical behavior has to be made. The dynamic joint method presented here does not need levers or a costly, rigid set-up, but an economical free-free set-up and cast-on weights. Furthermore, the same method can be emulated by FEM when a digital model exists.
Technical Paper

Multi-material Approach with Integrated Joining Technologies in the New Volvo S80

1999-09-28
1999-01-3147
In May 1998 Volvo launched its most exclusive car model so far, the Volvo S80, which is aimed to compete with upper luxury segment products. The car is produced in the new production facility in the Torslanda plant in Sweden. Among the more highlighted features were a transversely mounted in-line six cylinder engine with a specially designed gearbox, electronic multiplex technology with 18 computers in the network, and safety features like stability and traction control (STC), front seats with integrated antiwhiplash system (WHIPS) and inflatable curtain (IC) for improved side impact protection. To fulfill the product's high demands on safety, quality and environmental care, the design, materials selection and assembly of the car body with high precision had to be very carefully engineered. As in previous product-/process development a holistic and concurrent engineering approach was necessary.
Technical Paper

Organic Evolution of Development Organizations - An Experience Report

2016-04-05
2016-01-0028
In areas such as Active Safety, new technologies, designs (e.g. AUTOSAR) and methods are introduced at a rapid pace. To address the new demands, and also requirements on Functional Safety imposed by ISO 26262, the support for engineering methods, including tools and data management, needs to evolve as well. Generic and file-based data management tools, like spreadsheet tools, are popular in the industry due to their flexibility and legacy in the industry but provide poor control and traceability, while rigid and special-purpose tools provide structure and control of data but with limited evolvability. As organizations become agile, the need for flexible data management increases. Since products become more complex and developed in larger and distributed teams, the need for more unified, controlled, and consistent data increases.
Technical Paper

Passenger AIR-BAG Status Indication Awareness Study

1997-02-24
970276
With the growing concern about the potential dangers with rear facing child seats placed in the front seat of passenger airbag equipped cars, various systems are being considered for deactivation of the airbag. To increase the awareness of and confidence in these proposed systems, information displays were developed for the purpose of telling the status of the passenger airbag system and to warn when necessary. A study of the effectiveness, understanding and acceptance of a selection of such information displays was jointly undertaken by Volvo Car Corporation, SAAB Automobile AB and the Swedish National Road and Transport Research Institute. Respondents of various age and demographic composition, parents and grand parents of small children, were exposed to six different sets of information displays and were asked to interpret them and also rank which information displays that would most clearly convey the message.
Technical Paper

Severe Frontal Collisions with Partial Overlap - Two Decades of Car Safety Development

2013-04-08
2013-01-0759
Frontal Severe Partial Overlap Collisions (SPOC) also called small overlap crashes pose special challenges with respect to structural design as well as occupant protection. In the early 1990s, the SPOC test method was developed addressing 20-40% overlap against a fixed rigid barrier with initial velocities up to 65 km/h. The knowledge gained has been used in the design of Volvo vehicles since then. Important design principles include front side members orientated along the wheel envelopes together with a strong support structure utilizing a space frame principle with beams loaded mainly in tension and compression. This novel setup was first introduced in the 850-model in 1991 and has been refined and patented (2001) in later Volvo front structures. Among the design principles are multiple front side members on each side, helping energy absorption efficiency and robustness.
X