Refine Your Search

Topic

Author

Search Results

Technical Paper

A Semiconductor Gas Sensor Array for the Detection of Gas Emissions from Interior Trim Materials in Automobiles

1998-02-23
980995
The principles of an electronic nose are described briefly. It is shown how a sensor array in combination with pattern recognition software can be used for quality control and classification of car interior trim materials. Anomalies such as bad smelling leather and carpet are shown as outliers. The results are consistent with GC-MS TVOC measurements as well as with data from a human sensory panel. More needs to be done, however, regarding the sensor stability in particular before the sensor array can be used for routine classification of the trim materials.
Technical Paper

A Structure and Calibration Method for Data-Driven Modeling of NOX and Soot Emissions from a Diesel Engine

2012-04-16
2012-01-0355
The development and implementation of a new structure for data-driven models for NOX and soot emissions is described. The model structure is a linear regression model, where physically relevant input signals are used as regressors, and all the regression parameters are defined as grid-maps in the engine speed/injected fuel domain. The method of using grid-maps in the engine speed/injected fuel domain for all the regression parameters enables the models to be valid for changes in physical parameters that affect the emissions, without having to include these parameters as input signals to the models. This is possible for parameters that are dependent only on the engine speed and the amount of injected fuel. This means that models can handle changes for different parameters in the complete working range of the engine, without having to include all signals that actually effect the emissions into the models.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

2008-04-14
2008-01-0426
Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

An Investigation of the Coupling Between the Passenger Compartment and the Trunk in a Sedan

2007-05-15
2007-01-2356
The low frequency acoustic response of the passenger compartment (cavity) in sedans is considered with respect to the coupling between the cavity and the trunk. Both acoustic (via holes in the parcel shelf or behind the backrest of the rear seat), and structural (via the parcel shelf itself, or the panel of the backrest) mechanisms are investigated by both test and CAE. It is found that the peaks in acoustic response of the cavity at low frequencies are due to both acoustic and structural phenomena. However, the acoustic ones can be effectively blocked by proper design of the trim. Recommendations concerning modeling of acoustic effects in sedans are formulated.
Technical Paper

CAE Support to Vehicle Audio Installation Issues

2020-09-30
2020-01-1575
Audio CAE is an emerging area of interest for vehicle OEMs. Questions regarding early stages of the vehicle design, like choosing the possible positions for speakers, deciding the installation details that can influence the visual design, and integration of the low frequency speakers with the body & closures structure, are of interest. Therefore, at VCC, the development of the CAE methodology for audio applications has been undertaken. The key to all CAE applications is the loudspeaker model made available in the vibro-acoustic software used within the company. Such a model has been developed, implemented and verified in different frequency ranges and different applications. The applications can be divided into the low frequency ones (concerning the installation of woofers and subwoofers), and the middle/high frequency ones (concerning the installation of midrange and tweeter speakers). In the case of the woofer, it is the interaction with the body vibration that is of interest.
Technical Paper

Comparison Between CFD and PIV Measurements in a Passenger Compartment

2000-03-06
2000-01-0977
Numerical simulations of the flow inside a passenger compartment are compared with experimental data obtained from velocity field measurements using Particle Image Velocimetry (PIV). Comparisons are made in the front part of the passenger compartment with the air-distribution system operated in a ventilation mode. The sensitivty of the CFD-model to the boundary conditions was investigated and two different turbulence models were tested. Computations and experiments resulted in similar results for the overall flow field, however, rather large differences were found in the vertical spreading of the jet from the dashboard nozzle. The width of the jet was lower in the measurements than in the simulations. This difference is believed to be caused by the high diffusivity obtained when using a k-epsilon model in combination with an unstructured grid.
Technical Paper

Complete Engine Modeling Using CFD

2004-03-08
2004-01-0109
When developing gas exchange and combustion systems at Volvo Car Corporation, CFD (Computational Fluid Dynamics) is today a key tool. Three dimensional CFD is by tradition used to study one single component (e.g. manifolds and ports) at a time. Our experience is that this approach suffers from two main limitations; first that the boundary conditions (both upstream and downstream) are uncertain; and secondly that validation against experimental data is extremely difficult since any measured parameter will depend on the complete engine. Distribution of secondary gases and AFR (Air to Fuel ratio) are typical examples where traditional CFD methods fail. One proposed way to overcome these problems is to use 1D gas exchange models coupled with 3D CFD. The main problem with this approach is however the positioning and treatment of the boundaries between the models. Furthermore, the boundaries themselves will unconditionally cause disturbances in the pressure fields.
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
Technical Paper

Detailed Heat Release Analyses with Regard to Combustion of RME and Oxygenated Fuels in an HSDI Diesel Engine

2007-04-16
2007-01-0627
Experiments on a modern DI Diesel engine were carried out: The engine was fuelled with standard Diesel fuel, RME and a mixture of 85% standard Diesel fuel, 5% RME and 10% higher alcohols under low load conditions (4 bar IMEP). During these experiments, different external EGR levels were applied while the injection timing was chosen in a way to keep the location of 50% heat release constant. Emission analysis results were in accordance with widely known correlations: Increasing EGR rates lowered NOx emissions. This is explained by a decrease of global air-fuel ratio entailing longer ignition delay. Local gas-fuel ratio increases during ignition delay and local combustion temperature is lowered. Exhaust gas analysis indicated further a strong increase of CO, PM and unburned HC emissions at high EGR levels. This resulted in lower combustion efficiency. PM emissions however, decreased above 50% EGR which was also in accordance with previously reported results.
Technical Paper

Development and Validation of Coolant Temperature and Cooling Air Flow CFD Simulations at Volvo Cars

2004-03-08
2004-01-0051
This paper describes the development of a robust and accurate method to model one-phase heat exchangers in complete vehicle air flow simulations along with a comprehensive comparison of EFD and CFD results. The comparison shows that the inlet radiator coolant temperatures obtained with CFD were within ±4°C of the experimental data with a trend in the differences being dependent on the car speed. The relative differences in cooling air mass flow rates increase with increasing car speed, with CFD values generally higher than EFD. From the investigation, the conclusion is that the methodology and modeling technique presented offer an accurate tool for concept and system solutions on the front end design, cooling package and fan. Care must be taken in order to provide the best possible boundary conditions paying particular attention to the heat losses in the engine, performance data for the radiator and fan characteristics.
Technical Paper

Development of the Combustion System for Volvo Cars Euro6d VEA Diesel Engine

2017-03-28
2017-01-0713
The demands for a future diesel engine in terms of emission compliance, CO2 emissions, performance and cost effectiveness set new requirements for the development process of the combustion system. This paper focuses on the development of the next generation Volvo Cars diesel combustion system, which should comply with Euro 6d including Real Driving Emissions (RDE), with emphasis on the novel methods applied throughout the process. The foundation of a high performing combustion system is formed by first determining the requirements for the system, after which the key factors that affect system performance are selected, such as the charge motion, combustion chamber geometry and injector nozzle geometry. Based on the requirements, a robust charge motion with desired flow characteristics is defined. A new automated CFD optimization process for combustion chamber geometry and spray target is developed.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Drag and Dirt Deposition Mechanisms of External Rear View Mirrors and Techniques Used for Optimisation

2000-03-06
2000-01-0486
This paper gives details of the drag and dirt deposition mechanisms related to rear view mirrors. The major design parameters affecting mirror-generated drag and dirt deposition are described. A detailed analysis of the mirror noise properties is not covered for reasons of brevity. A range of test methods is also described which can be successfully used in the mirror optimisation process. The detailed drag breakdown of several rear view mirrors has been made by use of a combination of balance and pressure measurements. The drag breakdown gives an insight into the drag mechanisms and identifies the critical geometry parameters. It is concluded that the relatively high level of drag experienced by some of today's mirrors is primarily the result of premature tip separation and/or an unnecessarily large mirror foot. A level of drag close to the minimum possible, for a given mirror glass area, can be achieved by optimisation of the tip and foot areas.
Technical Paper

ECU-Less: State of the Art

2023-04-11
2023-01-0916
Most OEMs are shifting their strategy and way of thinking regarding ECUs. This, in combination with the electrification of vehicles and the shift towards software-based companies (car as a device), implies one of the biggest paradigm changes in automotive history. On the other hand, despite the current struggles, remarkable advances have been made in electronic technology during the past few years. These developments have opened a door to very promising enabling technology, with exterior lighting as a main target market. These circumstances seem to have created a perfect storm leading to new strategies for electronic control and driving for (front and rear) exterior lighting. We, at our company, have investigated the enabling technology, challenges, and benefits of this emerging exterior lighting approach, that we call ‘ECU-Less’.
Technical Paper

Effect of Cooling Airflow Intake Positioning on the Aerodynamics of a Simplified Battery Electric Road Vehicle

2024-04-09
2024-01-2521
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets.
Technical Paper

Experimental Comparison of Heat Losses in Stepped-Bowl and Re-Entrant Combustion Chambers in a Light Duty Diesel Engine

2016-04-05
2016-01-0732
Heat loss is one of the greatest energy losses in engines. More than half of the heat is lost to cooling media and exhaust losses, and they thus dominate the internal combustion engine energy balance. Complex processes affect heat loss to the cylinder walls, including gas motion, spray-wall interaction and turbulence levels. The aim of this work was to experimentally compare the heat transfer characteristics of a stepped-bowl piston geometry to a conventional re-entrant diesel bowl studied previously and here used as the baseline geometry. The stepped-bowl geometry features a low surface-to-volume ratio compared to the baseline bowl, which is considered beneficial for low heat losses. Speed, load, injection pressure, swirl level, EGR rate and air/fuel ratio (λ) were varied in a multi-cylinder light duty engine operated in conventional diesel combustion (CDC) mode.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
Technical Paper

Fast and economic stiffness evaluation of mechanical joints

2003-10-27
2003-01-2751
Car body structures and the joints between beam members have a great impact on global vehicle stiffness. With the method presented in this paper it is possible to experimentally assess the stiffness of joints by a robust and economic means. The stiffness of a beam can easily be found experimentally just by cutting it in two and using the cross-sections to calculate the polar moment of inertia. When it comes to a joint, there are no formulae or explicit expressions describing its behavior. Therefore, measurement of its mechanical behavior has to be made. The dynamic joint method presented here does not need levers or a costly, rigid set-up, but an economical free-free set-up and cast-on weights. Furthermore, the same method can be emulated by FEM when a digital model exists.
Technical Paper

Interaction between Fuel Jets and Prevailing Combustion During Closely-Coupled Injections in an Optical LD Diesel Engine

2019-04-02
2019-01-0551
Two imaging techniques are used to investigate the interaction between developed combustion from earlier injections and partially oxidized fuel (POF) of a subsequent injection. The latter is visualized by using planar laser induced fluorescence (PLIF) of formaldehyde and poly-cyclic aromatic hydrocarbons. High speed imaging captures the natural luminescence (NL) of the prevailing combustion. Three different fuel injection strategies are studied. One strategy consists of two pilot injections, with modest separations after each, followed by single main and post injections. Both of the other two strategies have three pilots followed by single main and post injections. The separations after the second and third pilots are several times shorter than in the reference case (making them closely-coupled). The closely-coupled cases have more linear heat release rates (HRR) which lead to much lower combustion noise levels.
Journal Article

Investigating the Limits of Charge Motion and Combustion Duration in a High-Tumble Spark-Ignited Direct-Injection Engine

2016-10-17
2016-01-2245
This paper describes the experimental study of a tumble-flap mounted in the intake port of a single-cylinder spark-ignited gasoline engine. The research question addressed was whether an optimal tumble level could be found for the combustion system under investigation. Indicated fuel consumption was measured for a number of part-load operating points with the tumble-flap either open or closed. The experimental results were subjected to an energy balance analysis to understand which portion of the fuel energy was converted to work and how much was lost by incomplete combustion, heat losses to walls and to the exhaust gases, as well as to pumping losses. Closing the tumble-flap resulted in reduced fuel consumption only in a small area of the operating map: only at low-speed, low-load operation, a benefit could be obtained.
X