Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

1963-01-01
630283
The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
Technical Paper

A Critical Analysis of Traffic Accident Data

1975-02-01
750916
General agreement exists that the ultimate goals of traffic accident research are to reduce fatality, mitigate injury and decrease economic loss to society. Although massive quantities of data have been collected in local, national and international programs, attempts by analysts to use these data to explore ideas or support hypotheses have been met by a variety of problems. Specifically, the coded variables in the different files are not consistent and little information on accident etiology is collected. Examples of the inadequacies of present data in terms of the collected and coded variables are shown. The vehicular, environmental and human (consisting of human factors and injury factors) variables are disproportionately represented in most existing data files in terms of recognized statistical evidence of accident causation. A systems approach is needed to identify critical, currently neglected variables and develop units of measurement and data collection procedures.
Technical Paper

A Data-Driven Approach to Determine the Single Droplet Post-Impingement Pattern on a Dry Wall Using Statistical Machine Learning Classification Methods

2021-04-06
2021-01-0552
The study of spray-wall interaction is of great importance to understand the dynamics during fuel-surface impingement process in modern internal combustion engines. The identification of droplet post-impingement pattern (contact, transition, non-contact) and droplet characteristics can quantitatively provide an estimation of energy transfer for spray-wall interaction, thus further influencing air-fuel mixing and emissions under combusting conditions. Theoretical criteria of single droplet post-impingement pattern on a dry wall have been experimentally and numerically studied by many researchers to quantify the hydrodynamic droplet behaviors. However, apart from model fidelity, another issue is the scalability. A theoretical criterion developed from one case might not be well suited to another scenario. In this paper, a data-driven approach for single droplet-dry wall post-impingement pattern utilizing arithmetical machine learning classification methods is proposed and demonstrated.
Technical Paper

A History of Mack Engine Lubricant Tests from 1985-2005: Mack T-7 through Mack T-12

2005-10-24
2005-01-3713
As on-highway, heavy-duty diesel engine designs have evolved to meet tighter emissions specifications and greater customer requirements, the crankcase environment for heavy-duty engine lubricants has changed. Engine lubricant quality is very important to help ensure engine durability, engine performance, and reduce maintenance downtime. Beginning in the late 1980's, a new Mack genuine oil specification and a new American Petroleum Institute (API) heavy-duty engine lubricant category have been introduced with each new U.S. heavy-duty, on-highway emissions specification. This paper documents the history and development of the Mack T-7, T-8, T-8A, T-8E, T-9, T-10, T-11, and T-12 engine lubricant tests.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

A Performance Comparison of Various Automatic Transmission Pumping Systems

1996-02-01
960424
The pumping system used in a step ratio automatic transmission can consume up to 20% of the total power required to operate a typical automotive transmission through the EPA city cycle. As such, it represents an area manufacturers have focused their efforts towards in their quest to obtain improved transmission efficiency. This paper will discuss the history of automatic transmission pumps that develop up to 300 psi along with a description of the factors used to size pumps and establish pump flow requirements. The various types of pumps used in current automatic transmissions will be described with a discussion of their characteristics including a comparison based upon observations of their performance. Specific attention will be focused on comparing the volumetric efficiency, mechanical efficiency, overall efficiency, pumping torque and discharge flow.
Technical Paper

A Regenerative Active Suspension System

1991-02-01
910659
Active automotive suspension systems have been under development for a number of years with recent introductions of various versions. A suspension system can be considered “active” when an outside power source is used to alter its characteristics, and these systems can be placed into one of three (3) different categories: semi-active damping, fully active, and low frequency active. A regenerative pump concept can minimize the power requirement for the low frequency active system. It utilizes four (4) independent variable displacement pump/motor combinations on a common shaft to actuate each individual suspension unit. This paper overviews the system configuration, describes the power and energy-saving features of the system, and discusses possible pump configurations and control strategies.
Technical Paper

A Research on Brand Sound Positioning and Implementing with Active Sound Design

2017-06-05
2017-01-1754
This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
Technical Paper

A Study for Improving the Sound Quality of Vehicle Horns through Acoustic Characteristics Analysis and CAE Method Development

2013-04-08
2013-01-0422
It is necessary for vehicle horns not only to satisfy regulations on the sound level but also to fulfill various demands related with sound quality. For example, a disk type horn which is attached on most of small size vehicles has been required to improve its sharp feeling sound. However, the improvement of horn sound has been deterred mainly due to the deficiency of the understanding on how design factors are related with emotional judgments on horn sound. In addition, a proper CAE tool is not available in the process of horn design since it is difficult to describe multi-physical phenomena engaged with horns. The purpose of this study is to improve the sound quality of a disk type horn. In order to achieve this goal, firstly, acoustic characteristics of horns were obtained through a series of experiments. In addition, various sound quality metrics were examined in order to derive design factors affecting sound quality enhancement.
Technical Paper

A Study on Control Logic Design for Power Seat

2019-04-02
2019-01-0466
The large luxury sedan seat has a 22-way Movement. It offers a wide range of adjustments to enhance passenger comfort performance while it has many constraints on movement in constrained indoor space. In addition, the power seat is operated by a motor, which makes it difficult for the user to determine the amount of adjustment, unlike determining the amount of adjustment by the power and feel of a person, such as manual seat adjustment. IMS, one-touch mode, is also constrained by parameters such as indoor space package, user's lifestyle, etc. during function playback. This paper aims to design the seat control logic to achieve the best seat comfort while satisfying each constraint. The results of this study are as follows. Increase robustness of power seat control logic. Provide optimal adjustments and comfort at each location. Offer differentiated custom control and seating modes for each seat. Improve customer satisfaction and quality by upgrading software.
Journal Article

A Study on North American Customer Preference to Interior Noise using Sound Balance Analysis

2014-04-01
2014-01-0023
A new approach to achieve better customer perception of overall vehicle quietness is the sound balance improvement of vehicle interior sound during driving. Interior sound is classified into 3 primary sound source shares such as engine sound relative to revolution speed, tire road noise and wind noise relative to vehicle speed. Each interior sound shares are classified using the synchronous time-domain averaging method. The sound related to revolution order of engine and auxiliaries is considered as engine sound share, tire road noise and wind noise shares are extracted by multiple coherent output power analysis. Sound balance analysis focuses on improving the relative difference in interior sound share level between the 3 primary sound sources. Virtual sound simulator which is able to represent various driving conditions and able to adjust imaginary sound share is built for several vehicles in same compact segment.
Technical Paper

A Study on an Integrated System to Measure and Analyze Customer Vehicle Usage Monitoring through a Smartphone

2014-04-01
2014-01-0183
Customer vehicle usage monitoring is one of the most fundamental elements to consider in the process of developing a durable vehicle. The extant method to research customer vehicle usage takes considerable time and effort because it requires attaching a series of sensors to the vehicle-gyroscope, accelerometer, microphone, and GPS-to gather information through data logs and then to analyze data in a computer where designated analyzing software has been installed. To solve the problem, this paper introduces a new concept of integrated system developed to examine customer vehicle usage that can analyze data by collecting it from a variety of sensors installed on a smartphone.
Technical Paper

A Zero Trust Architecture for Automotive Networks

2024-04-09
2024-01-2793
Since the early 1990’s, commercial vehicles have suffered from repeated vulnerability exploitations that resulted in a need for improved automotive cybersecurity. This paper outlines the strategies and challenges of implementing an automotive Zero Trust Architecture (ZTA) to secure intra-vehicle networks. Zero Trust (ZT) originated as an Information Technology (IT) principle of “never trust, always verify”; it is the concept that a network must never assume assets can be trusted regardless of their ownership or network location. This research focused on drastically improving security of the cyber-physical vehicle network, with minimal performance impact measured as timing, bandwidth, and processing power. The automotive ZTA was tested using a software-in-the-loop vehicle simulation paired with resource constrained hardware that closely emulated a production vehicle network.
Technical Paper

Aging of Zeolite Based Automotive Hydrocarbon Traps

2007-04-16
2007-01-1058
This paper analyzes the aging of zeolite based hydrocarbon traps to guide development of diagnostic algorithms. Previous research has shown the water adsorption ability of zeolite ages along with the hydrocarbon adsorption ability, and this leads to a possible diagnostic algorithm: the water concentration in the exhaust can be measured and related to aging. In the present research, engine experiments demonstrate that temperature measurements are also related to aging. To examine the relationship between temperature-based and moisture-based diagnostic algorithms, a transient, nonlinear heat and mass transfer model of the exhaust during cold-start is developed. Despite some idealizations, the model replicates the qualitative behavior of the exhaust system. A series of parametric studies reveals the sensitivity of the system response to aging and various noise factors.
Technical Paper

An Approach for Incorporating Learning into System Design: System Level Assessment Methodology

2023-09-05
2023-01-1517
Shafaat and Kenley in 2015 identified the opportunity to improve System Engineering Standards by incorporating the design principle of learning. The System Level Assessment (SLA) Methodology is an approach that fulfills this need by efficiently capturing the learnings of a team of subject matter experts in the early stages of product system design. By gathering expertise, design considerations are identified that when used with market and business requirements improve the overall quality of the product system. To evaluate the effectiveness of this approach, the methodology has been successfully applied over 400 times within each realm of the New Product Introduction process, including most recently to a Technology Development program (in the earliest stages of the design process) to assess the viability of various electrification technologies under consideration by an automotive Tier 1 supplier.
Technical Paper

An Engine Start/Stop System for Improved Fuel Economy

2007-04-16
2007-01-1777
During city traffic or heavily congested roads, a vehicle can consume a substantial amount of fuel idling when the vehicle is stopped. Due to regulation enforcement, auto manufacturers are developing systems to increase the mileage and reduce emissions. Turning off the engine at traffic lights and regenerative braking systems are simple ways to reduce emissions and fuel consumption. In order to develop strong manufacturer and consumer interest, this type of operation needs to be automated such that the stop/start functionality requires no driver interaction and takes place without the intervention of the vehicle operator. Valeo Electrical Systems has developed such a system that replaces the OEM engine alternator with a starter/alternator driven by a standard multi-ribbed V belt. To avoid a break and dual voltage network, this system is based on a 12V electrical system using an Enhanced Power Supply.
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

An Improved Methodology for Calculation of the Inertial Resistance of Automotive Latching Systems

2014-04-01
2014-01-0544
This paper outlines an improved methodology to perform calculations to verify the compliance of automotive door latch systems to minimum legal requirements as well as to perform additional due diligence calculations necessary to comprehend special cases such as roll over crashes and locally high inertial loadings. This methodology builds on the calculation method recommended by SAE J839 and provides a robust and clear approach for application of this method to cable release systems, which were not prevalent at the time J839 was originally drafted. This method is useful in and of itself but its utility is further increased by the application of the method to a Computer Aided Design (CAD) template (in this case for Catia V5), that allows some automation of the calculation process for a given latch type. This will result in a savings of time, fewer errors and allows for an iterative concurrent analysis during the design process.
Technical Paper

An Overview of Current Automatic, Manual and Continuously Variable Transmission Efficiencies and Their Projected Future Improvements

1999-03-01
1999-01-1259
This paper will overview current production manual, automatic, and continuously variable transmission (CVT) efficiencies and efficiency variations across the industry. For automatic transmissions, efficiencies associated with the pump and the gearbox components will be highlighted along with areas for improvements. Efficiencies associated with various types of pumps such as internal-external, gerotor, hypocycloidal, and variable displacement will be compared. For CVT's a comparison of efficiencies for belt type and toroidal types will be provided, along with an examination of external-external and variable displacement type ball pumps.
X