Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Combustion and Emission Characteristics of a Small-Bore HSDI Diesel Engine in the Conventional and LTC Combustion Regimes

2005-09-11
2005-24-045
An experimental investigation was conducted on a small-bore, high-speed diesel engine to study the effect of different operating parameters on combustion and engine-out emissions in the conventional and low temperature regimes. For the conventional diesel combustion, the spray behavior is analyzed and a differentiation is made between the conditions in the small-bore and the larger bore quiescent chamber engines. The effects of the injection pressure, exhaust gas recirculation (EGR), injection timing and swirl ratio (SR) on combustion and engine-out emission are investigated. The trade-off between NOx and smoke, measured in Bosch smoke unit, (BSU), is investigated with a special attention to the low temperature combustion regime, (LTC). The results showed that the LTC regime could be reached at fairly high EGR rates under all the injection pressures investigated in this work. The margin for the variation in EGR was limited just before the misfiring EGR.
Technical Paper

Effect of EGR on Autoignition, Combustion, Regulated Emissions and Aldehydes in DI Diesel Engines

2002-03-04
2002-01-1153
In view of the new regulations for diesel engine emissions, EGR is used to reduce the NOx emissions. Diluting the charge with EGR affects the autoignition, combustion as well as the regulated and unregulated emissions of diesel engines, under different operating conditions. This paper presents the results of an investigation on the effect of EGR on the global activation energy and order of the autoignition reactions, premixed and mixing-controlled combustion fractions, the regulated (unburned hydrocarbons, NOx, CO and particulates), aldehydes, CO2 and HC speciation. The experiments were conducted on two different direct injection, four-stroke-cycle, single-cylinder diesel engines over a wide range of operating conditions and EGR ratios.
Technical Paper

Effect of Using Biodiesel (B-20) and Combustion Phasing on Combustion and Emissions in a HSDI Diesel Engine

2011-04-12
2011-01-1203
The use of biodiesel and its blends with ultra low sulfur diesel (ULSD) is gaining significant importance due to its ability to burn in conventional diesel engines with minor modifications. However the chemical and physical properties of biodiesel are different compared to the conventional ULSD. These differences directly impact the injection, spray formation, auto ignition and combustion processes which in turn affect the engine-out emissions. To understand the effect of fueling with B-20, tests were conducted on a single cylinder 0.42L direct injection research diesel engine. The engine is equipped with a common rail injection system, variable EGR and swirl control systems and was operated at a constant engine speed of 1500 rpm and 3 bar IMEP to simulated turbocharged conditions. Injection timing and duration were adjusted with B-20 at different locations of peak premixed combustions (LPPC) and two different swirl ratios to achieve 3 bar IMEP.
Journal Article

Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

2014-04-01
2014-01-1376
This paper presents the results of an experimental investigation on a single cylinder engine to validate a two-component JP-8 surrogate. The two-component surrogate was chosen based on a previous investigation where the key properties, such as DCN, volatility, density, and lower heating value, of the surrogate were matched with those of the target JP-8. The matching of the auto-ignition, combustion, and emission characteristics of the surrogate with JP-8 was investigated in an actual diesel engine environment. The engine tests for the validation of the surrogate were conducted at an engine speed of 1500 rpm, a load of 3 bar, and different injection timings. The results for the cylinder gas pressure, ignition delay period, rate of heat release, and the CO, HC, and NOx emissions showed a good match between the surrogate and the target JP-8. However, the engine-out particulate matter for the surrogate was lower than that for the JP-8 at all tested conditions.
Technical Paper

The Development of an Electronic Control Unit for a High Pressure Common Rail Diesel/Natural Gas Dual-Fuel Engine

2014-04-01
2014-01-1168
Natural gas has been considered to be one of the most promising alternative fuels due to its lower NOx and soot emissions, less carbon footprint as well as attractive price. Furthermore, higher octane number makes it suitable for high compression ratio application compared with other gaseous fuels. For better economical and lower emissions, a turbocharged, four strokes, direct injection, high pressure common rail diesel engine has been converted into a diesel/natural gas dual-fuel engine. For dual-fuel engine operation, natural gas as the main fuel is sequentially injected into intake manifold, and a very small amount of diesel is directly injected into cylinder as the ignition source. In this paper, a dual-fuel electronic control unit (ECU) based on the PowerPC 32-bit microprocessor was developed. It cooperates with the original diesel ECU to control the fuel injection of the diesel/natural gas dual-fuel engine.
X