Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Faster Algorithm for the Calculation of the IMEP

2000-10-16
2000-01-2916
The Indicated Mean Effective Pressure (IMEP) is a very important engine parameter, giving significant information about the quality of the cycle that transforms heat into mechanical work. For this reason, modern data acquisition systems display, on line, the cylinder pressure variation together with the corresponding IMEP. The paper presents a very simple algorithm for the calculation of IMEP, based on the correlation between IMEP and the gas pressure torque. It was found that that the IMEP may be calculated by a very simple formula involving only two harmonic components of the cylinder pressure variation. The computation of the two harmonic components is very easily performed because it does not involve the calculation of an average pressure and the cylinder volume variation. The method was experimentally validated showing differences less than 0.2% with respect to the IMEP calculated by the traditional method.
Technical Paper

A Flow Network Approach to Vehicle Underhood Heat Transfer Problem

1993-04-01
931073
A flow network method was developed to predict the underhood temperature distribution of an automobile. The method involves the solution of simplified energy and momentum equations of the air flow in control volumes defined by subdividing the air space between the surfaces of the underhood components and the front-end geometry. The control volumes are interconnected by ducts with branches and bends to form a flow network. Conservation of mass and momentum with appropriate pressure-loss coefficients leads to a system of algebraic equations to be solved for the flow rates through each volume. The computed flow rates are transferred to a thermal model to calculate the temperatures of the air and the major vehicle components that affect the underhood environment. The method was applied to a 1986 3.0L Taurus and compared with vehicle experiments conducted in a windtunnel.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Journal Article

A New Technique to Determine the Burning Velocity in a Gasoline Direct Injection Engine

2014-04-01
2014-01-1176
Many approaches have been taken to determine the burning velocity in internal combustion engines. Experimentally, the burning velocity has been determined in optically accessible gasoline engines by tracking the propagation of the flame front from the spark plug to the end of the combustion chamber. These experiments are costly as they require special imaging techniques and major modifications in the engine structure. Another approach to determine the burning velocity is from 3D CFD simulation models. These models require basic information about the mechanisms of combustion which are not available for distillate fuels in addition to many assumptions that have to be made to determine the burning velocity. Such models take long periods of computational time for execution and have to be calibrated and validated through experimentation.
Technical Paper

A Practical Time-Domain Approach to Controller Design and Calibration for Applications in Automotive Industry

2011-04-12
2011-01-0693
This paper summarizes a systematic approach to control of nonlinear automotive systems exposed to fast transients. This approach is based on a combined application of hardware characterization, which inverts nonlinearities, and conventional Proportional-plus-Integral-plus-Derivative (PID) control. The approach renders the closed-loop system dynamics more transparent and simplifies the controller design and calibration for applications in automotive industry. The authors have found this approach effective in presenting and teaching PID controller design and calibration guidelines to automotive engineering audience, who at times may not have formal training in controls but need to understand the development and calibration process of simple controllers.
Technical Paper

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

2001-05-14
2001-01-2071
Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Technical Paper

A Real-Time Intelligent Speed Optimization Planner Using Reinforcement Learning

2021-04-06
2021-01-0434
As connectivity and sensing technologies become more mature, automated vehicles can predict future driving situations and utilize this information to drive more energy-efficiently than human-driven vehicles. However, future information beyond the limited connectivity and sensing range is difficult to predict and utilize, limiting the energy-saving potential of energy-efficient driving. Thus, we combine a conventional speed optimization planner, developed in our previous work, and reinforcement learning to propose a real-time intelligent speed optimization planner for connected and automated vehicles. We briefly summarize the conventional speed optimization planner with limited information, based on closed-form energy-optimal solutions, and present its multiple parameters that determine reference speed trajectories.
Technical Paper

A Simple Fan Model for Underhood Thermal Management Analyses

2002-03-04
2002-01-1025
This work presents a simple fan model that is based on the actuator disk approximation, and the blade element and vortex theory of a propeller. A set of equations are derived that require as input the rotational speed of the fan, geometric fan data, and the lift and drag coefficients of the blades. These equations are solved iteratively to obtain the body forces generated by the fan in the axial and circumferential directions. These forces are used as momentum sources in a CFD code to simulate the effect of the fan in an underhood thermal management simulation. To validate this fan model, a fan experiment was simulated. The model was incorporated into the CFD code STAR-CD and predictions were generated for axial and circumferential air velocities at different radial positions and at different planes downstream of the fan. The agreement between experimental measurements and predictions is good.
Technical Paper

Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle

2015-04-14
2015-01-0832
For several years there has been a great deal of effort made in researching ways to run a compression ignition engine with simultaneously high efficiency and low emissions. Recently much of this focus has been dedicated to using gasoline-like fuels that are more volatile and less reactive than conventional diesel fuel to allow the combustion to be more premixed. One of the key challenges to using fuels with such properties in a compression ignition engine is stable engine operation at low loads. This paper provides an analysis of how stable gasoline compression ignition (GCI) engine operation was achieved down to idle speed and load on a multi-cylinder compression ignition engine using only 87 anti-knock index (AKI) gasoline. The variables explored to extend stable engine operation to idle included: uncooled exhaust gas recirculation (EGR), injection timing, injection pressure, and injector nozzle geometry.
Technical Paper

Active Control of Vibration and Noise in Automotive Timing Chain Drives

1997-02-24
970501
Vibration and noise are generally considered to be the major problems in power transmission chains. This paper presents an adaptive, active control strategy for the reduction of vibration in automotive timing chain drives and examines the effects of the active control on noise reduction. Experimental results show that the average vibration amplitude is diminished by as much as 90% under low to moderate tension conditions, and the chain noise is reduced by about 3 dB. The experimental apparatus has low cost and is readily applicable to an industrial environment.
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Analyzing the Uncertainty in the Fuel Economy Prediction for the EPA MOVES Binning Methodology

2007-04-16
2007-01-0280
Developed by the U.S. Environmental Protection Agency (EPA), the Multi-scale mOtor Vehicle Emission Simulator (MOVES) is used to estimate inventories and projections through 2050 at the county or national level for energy consumption, nitrous oxide (N2O), and methane (CH4) from highway vehicles. To simulate a large number of vehicles and fleets on numerous driving cycles, EPA developed a binning technique characterizing the energy rate for varying Vehicle Specific Power (VSP) under predefined vehicle speed ranges. The methodology is based upon the assumption that the vehicle behaves the same way for a predefined vehicle speed and power demand. While this has been validated for conventional vehicles, it has not been for advanced vehicle powertrains, including hybrid electric vehicles (HEVs) where the engine can be ON or OFF depending upon the battery State-of-Charge (SOC).
Technical Paper

Assessing and Modeling Direct Hydrogen and Gasoline Reforming Fuel Cell Vehicles and Their Cold-Start Performance

2003-06-23
2003-01-2252
This paper analyzes fuel economy benefits of direct hydrogen and gasoline reformer fuel cell vehicles, with special focus on cold-start impacts on these fuel cell based vehicles. Comparing several existing influential studies reveals that the most probable estimates from these studies differ greatly on the implied benefits of both types of fuel cell vehicles at the tank-to-wheel level (vehicle-powertrain efficiency and/or specific power), leading to great uncertainties in estimating well-to-wheel fuel energy and/or greenhouse gas (GHG) emission reduction potentials. This paper first addresses methodological issues to influence the outcome of these analyses. With one exception, we find that these studies consistently ignore cold-start and warm-up issues, which play important roles in determining both energy penalties and start-up time of fuel cell vehicles. To better understand cold-start and warm-up behavior, this paper examines approaches and results based on two available U.S.
Journal Article

Assessment of Large-Eddy Simulations of Turbulent Round Jets Using Low-Order Numerical Schemes

2017-03-28
2017-01-0575
The basic idea behind large-eddy simulation (LES) is to accurately resolve the large energy-containing scales and to use subgrid-scale (SGS) models for the smaller scales. The accuracy of LES can be significantly impacted by the numerical discretization schemes and the choice of the SGS model. This work investigates the accuracy of low-order LES codes in the simulation of a turbulent round jet which is representative of fuel jets in engines. The turbulent jet studied is isothermal with a Reynolds number of 6800. It is simulated using Converge, which is second-order accurate in space and first-order in time, and FLEDS, developed at Purdue University, which is sixth-order accurate in space and fourth-order in time. The high-order code requires the resolution of acoustic time-scales and hence is approximately 10 times more expensive than the low-order code.
Journal Article

Automated Model Initialization Using Test Data

2017-03-28
2017-01-1144
Building a vehicle model with sufficient accuracy for fuel economy analysis is a time-consuming process, even with the modern-day simulation tools. Obtaining the right kind of data for modeling a vehicle can itself be challenging, given that while OEMs advertise the power and torque capability of their engines, the efficiency data for the components or the control algorithms are not usually made available for independent verification. The U.S. Department of Energy (DOE) funds the testing of vehicles at Argonne National Laboratory, and the test data are publicly available. Argonne is also the premier DOE laboratory for the modeling and simulation of vehicles. By combining the resources and expertise with available data, a process has been created to automatically develop a model for any conventional vehicle that is tested at Argonne. This paper explains the process of analyzing the publicly available test data and computing the parameters of various components from the analysis.
Technical Paper

Axial Flux Variable Gap Motor: Application in Vehicle Systems

2002-03-04
2002-01-1088
Alternative electric motor geometry with potentially increased efficiency is being considered for hybrid electric vehicle applications. An axial flux motor with a dynamically adjustable air gap (i.e., mechanical field weakening) has been tested, analyzed, and modeled for use in a vehicle simulation tool at Argonne National Laboratory. The advantage of adjusting the flux is that the motor torque-speed characteristics can better match the vehicle load. The challenge in implementing an electric machine with these qualities is to develop a control strategy that takes advantage of the available efficiency improvements without using excessive energy to mechanically adjust the air gap and thus reduce the potential energy savings. Motor efficiency was mapped in terms of speed, torque, supply voltage, and rotor-to-stator air gap.
Technical Paper

Breaking Down Technology Barriers for Advanced Vehicles: The Graduate Automotive Technology Education (GATE) Program

2000-04-02
2000-01-1595
The U.S. Department of Energy (DOE) Office of Advanced Automotive Technologies (OAAT), in partnership with industry, is developing transportation technologies that will improve the energy efficiency of our transportation system. Most OAAT programs are focused exclusively on technology development. However, the twin goals of developing innovative technologies and transferring them to industry led OAAT to realize the growing need for people trained in non-traditional, emerging technologies. The Graduate Automotive Technology Education (GATE) program combines graduate-level education with technology development and transfer by training a new generation of automotive engineers in critical multi-disciplinary technologies, by fostering cooperative research in those technologies, and by transferring those technologies directly to industrial organizations.
Journal Article

CFD-Guided Combustion System Optimization of a Gasoline Range Fuel in a Heavy-Duty Compression Ignition Engine Using Automatic Piston Geometry Generation and a Supercomputer

2019-01-15
2019-01-0001
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty diesel engine running with a gasoline fuel that has a research octane number (RON) of 80. The goal was to optimize the gasoline compression ignition (GCI) combustion recipe (piston bowl geometry, injector spray pattern, in-cylinder swirl motion, and thermal boundary conditions) for improved fuel efficiency while maintaining engine-out NOx within a 1-1.5 g/kW-hr window. The numerical model was developed using the multi-dimensional CFD software CONVERGE. A two-stage design of experiments (DoE) approach was employed with the first stage focusing on the piston bowl shape optimization and the second addressing refinement of the combustion recipe. For optimizing the piston bowl geometry, a software tool, CAESES, was utilized to automatically perturb key bowl design parameters. This led to the generation of 256 combustion chamber designs evaluated at several engine operating conditions.
X