Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Study on Fatigue Damage of Caldie™ from Different Manufacturing Routes

2022-03-29
2022-01-0245
In automotive body manufacturing the dies for blanking/trimming/piercing are under most severe loading condition involving high contact stress at high impact loading and large number of cycles. With continuous increase in sheet metal strength, the trim die service life becomes a great concern for industries. In this study, competing trim die manufacturing routes were compared, including die raw materials produced by hot-working (wrought) vs. casting, edge-welding (as repaired condition) vs. bulk base metals (representing new tools), and the heat treatment method by induction hardening vs. furnace through-heating. CaldieTM, a Uddeholm trademarked grade was used as trim die material. The mechanical tests are performed using a WSU developed trimming simulator, with fatigue loading applied at cubic die specimen’s cutting edges through a tungsten carbide rod to accelerate the trim edge damage. The tests are periodically interrupted at specified cycles for measurement of die edge damage.
Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Technical Paper

A Hybrid System Solution of the Interrupt Latency Compatibility Problem

1999-03-01
1999-01-1099
Microprocessors and microcontrollers are now widely used in automobiles. Microprocessor systems contain sources of interrupt and interrupt service routines, which are software components executed in response to the assertion of an interrupt in hardware. A major problem in designing the software of microprocessor systems is the analytical treatment of interrupt latency. Because multiple interrupt service routines are executed on the same CPU, they compete for the CPU and interfere with each other's latency requirements. Here, interrupt latency is defined as the delay between the assertion of the interrupt in hardware and the start of execution of the associated interrupt service routine. It is estimated that 80% of intermittent bugs in small microprocessor software loads are due to improper treatment of interrupts. Until this work, there is no analytic method for analyzing a particular system to determine if it may violate interrupt latency requirements.
Technical Paper

A Mathematical Model for Design and Production Verification Planning

1999-05-10
1999-01-1624
The paper focuses on various important decisions of verification and testing plans of the product during its design and production stages. In most of the product and process development projects, decisions on verification and testing are ad-hoc or based on traditions. Such decisions never guarantee the performance of the product as planned, during its whole life cycle. We propose an analytical approach to provide the concrete base for such crucial decisions of verification planning. Accordingly, a mathematical model is presented. Also, a case study of an automotive Electro-mechanical product is included to illustrate the application of the model.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Journal Article

A New Device for Multi-Axial Tissue Testing: Application to Combined Bending and Shear Loading of the Spine

2009-04-20
2009-01-0249
A multi-axial test device was designed to obtain the material properties of the lumbar spine in combined loading modes. The custom designed tester consists of a rigid platen driven by three DC powered geared motors. Two motors, each connected to parallel linear actuators control the angular displacement (for flexion and extension) and vertical motion (for tension and compression), while a third DC motor connected to a threaded rod was employed to control the horizontal displacement (for anterior and posterior shear) of the rigid platen. The testing machine is driven in displacement-control mode by a feedback system based on data from three rotary potentiometers. Six entire lumbar spine segments (T12-S1) were potted in aluminum cups with DynaCast and tested within failure limits to compression, tension, anterior shear, posterior shear, flexion, extension, anterior shear-flexion, posterior shear-extension and finally in combined anterior shear-flexion loading.
Technical Paper

A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners

1998-05-04
981407
A new friction testing system has been designed and built to simulate the actual engine conditions in friction and wear test of piston-ring and cylinder liner assembly. Experimental data has been developed as Friction Coefficient / Crank Angle Degree diagrams including the effects of running speed (500 and 700 rpm) and ring normal load. Surface roughness profilocorder traces were obtained for tested samples. Mixed lubrication regime observed in the most part of the test range. New cylinder bore materials and lubricants can be screened easily and more reliable simulated engine friction data can be collected using this technique.
Technical Paper

A Practical Approach for Cross-Functional Vehicle Body Weight Optimization

2011-04-12
2011-01-1092
The goal of optimization in vehicle design is often blurred by the myriads of requirements belonging to attributes that may not be quite related. If solutions are sought by optimizing attribute performance-related objectives separately starting with a common baseline design configuration as in a traditional design environment, it becomes an arduous task to integrate the potentially conflicting solutions into one satisfactory design. It may be thus more desirable to carry out a combined multi-disciplinary design optimization (MDO) with vehicle weight as an objective function and cross-functional attribute performance targets as constraints. For the particular case of vehicle body structure design, the initial design is likely to be arrived at taking into account styling, packaging and market-driven requirements.
Technical Paper

A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines

1997-02-24
970627
The current extensive revisitation of the application of gasoline direct-injection to automotive, four-stroke, spark-ignition engines has been prompted by the availability of technological capabilities that did not exist in the late 1970s, and that can now be utilized in the engine development process. The availability of new engine hardware that permits an enhanced level of computer control and dynamic optimization has alleviated many of the system limitations that were encountered in the time period from 1976 to 1984, when the capabilities of direct-injection, stratified-charge, spark-ignition engines were thoroughly researched. This paper incorporates a critical review of the current worldwide research and development activities in the gasoline direct-injection field, and provides insight into new areas of technology that are being applied to the development of both production and prototype engines.
Technical Paper

A Unified Approach to Solder Joint Life Prediction

2000-03-06
2000-01-0454
A unified approach has been developed and applied to solder joint life prediction in this paper, which indicates a breakthrough for solder joint reliability simulation. It includes the material characterization of solder alloys, the testing of solder joint specimens, a unified viscoplastic constitutive framework with damage evolution, numerical algorithm development and implementation, and experimental validation. The emphasis of this report focuses on the algorithm development and experimental verification of proposed viscoplasticity with damage evolution.
Technical Paper

A Warpage Measurement System with Large Dynamic Range for Boards with Components

2000-03-06
2000-01-0458
A new algorithm for carrier removal, a key step in the Fourier transform method of fringe pattern analysis, is presented in this paper. The accuracy of frequency estimations is critical to carrier removal to avoid potential significant errors in the recovered phase. A new algorithm on Fourier transform and curve fitting technique is developed. To avoid an ill-conditioned result in solving the least-square problem, an orthogonal polynomial curve fitting algorithm is developed. A new system that combines projected grating moiré (PM) with shadow moiré (SM), recently designed and built with large dynamic range for both component level and board level warpage measurement for the reliability study of electronic packaging materials and structures, is presented and demonstrated.
Technical Paper

Active Damping of Engine Idle Speed Oscillation by Applying Adaptive Pid Control

2001-03-05
2001-01-0261
This paper investigates the use of an adaptive proportional-integral-derivative (APID) controller to reduce a combustion engine crankshaft speed pulsation. Both computer simulations and engine test rig experiments are used to validate the proposed control scheme. The starter/alternator (S/A) is used as the actuator for engine speed control. The S/A is an induction machine. It produces a supplemental torque source to cancel out the fast engine torque variation. This machine is placed on the engine crankshaft. The impact of the slowly varying changes in engine operating conditions is accounted for by adjusting the APID controller parameters on-line. The APID control scheme tunes the PID controller parameters by using the theory of adaptive interaction. The tuning algorithm determines a set of PID parameters by minimizing an error function. The error function is a weighted combination of the plant states and the required control effort.
Technical Paper

Advancement and Validation of a Plug-In Hybrid Electric Vehicle Plant Model

2016-04-05
2016-01-1247
The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
Technical Paper

Aging Simulation of Electric Vehicle Battery Cell Using Experimental Data

2021-04-06
2021-01-0763
The adoption of lithium-ion batteries in vehicle electrification is fast growing due to high power and energy demand on hybrid and electric vehicles. However, the battery overall performance changes with time through the vehicle life. This paper investigates the electric vehicle battery cell aging under different usages. Battery cell experimental data including open circuit voltage and internal resistance is utilized to build a typical electric vehicle model in the AVL-Cruise platform. Four driving cycles (WLTP, UDDS, HWFET, and US06) with different ambient temperatures are simulated to acquire the battery cell terminal currents. These battery cell terminal current data are inputs to the MATLAB/Simulink battery aging model. Simulation results show that battery degrades quickly in high ambient temperatures. After 15,000 hours usage in 50 degrees Celsius ambient temperature, the usable cell capacity is reduced up to 25%.
Technical Paper

An Alternative Approach for Formulation of a Crushable PU Foam Considering its Behavior under Compressive Loads

2015-04-14
2015-01-1483
Rigid polyurethane (PU) foam finds wide applications as a lightweight material in impact safety design such as improving occupant safety in vehicle crashes. The two principal reacting compounds for formulating such foam are variants of polyol and isocyanate. In the present study, an alternative mechanical engineering-based approach for determining, with confidence, the desirable ratio of reacting compounds for formulation of a rigid/crushable PU foam for mechanical applications is demonstrated. According to the present approach, PU foam samples are prepared by varying the mixing ratio over a wide range. The desirable mixing ratio is shown to be the one that optimizes key mechanical properties under compression such as total absorbed energy, specific absorbed energy and energy absorption efficiency.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

An Experimental Investigation of Spray Transfer Processes in an Electrostatic Rotating Bell Applicator

1998-09-29
982290
A better understanding is needed of the electrostatic rotating bell (ESRB) application of metallic basecoat paint to automobile exteriors in order to exploit their high transfer efficiency without compromising the coating quality. This paper presents the initial results from experimental investigation of sprays from an ESRB which is designed to apply water-borne paint. Water was used as paint surrogate for simplicity. The atomization and transport regions of the spray were investigated using laser light sheet visualizations and phase Doppler particle analyzer (PDPA). The experiments were conducted at varying levels of the three important operating parameters: liquid flow rate, shaping-air flow rate, and bellcup rotational speed. The results show that bellcup speed dominates atomization, but liquid and shaping-air flow rate settings significantly influence the spray structure. The visualization images showed that the atomization occurs in ligament breakup regime.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Journal Article

An Innovative Modeling Approach to Thermal Management using Variable Fidelity Flow Network Models Imbedded in a 3D Analysis

2011-04-12
2011-01-1048
Speed and accuracy are the critical needs in software for the modeling and simulation of vehicle cooling systems. Currently, there are two approaches used in commercially available thermal analysis software packages: 1) detailed modeling using complex and sophisticated three-dimensional (3D) heat transfer and computational fluid dynamics, and 2) rough modeling using one-dimensional (1D) simplistic network solvers (flow and thermal) for quick prediction of flow and thermal fields. The first approach offers accuracy at the cost of speed, while the second approach provides the simulation speed, sacrificing accuracy and can possibly lead to oversimplification. Therefore, the analyst is often forced to make a choice between the two approaches, or find a way to link or couple the two methods. The linking between one-dimensional and three-dimensional models using separate software packages has been attempted and successfully accomplished for a number of years.
X