Refine Your Search

Search Results

Journal Article

A Fuel Surrogate Validation Approach Using a JP-8 Fueled Optically Accessible Compression Ignition Engine

2015-04-14
2015-01-0906
An experimental fuel surrogate validation approach is proposed for a compression ignition application, and applied to validate a Jet-A POSF 4658 fuel surrogate. The approach examines the agreement of both physical and chemical properties of surrogate and target fuels during validation within a real compression-ignition engine environment during four sequential but distinct combustion phases. In-cylinder Mie Scattering measurements are applied to evaporating sprays to compare the behavior of the surrogate, its target fuel, and for reference, n-heptane. Early mixture formation and low temperature reaction behavior were investigated using 2-D broadband chemiluminescence imaging, while high temperature ignition and combustion chemistry were studied using OH chemiluminescence imaging. The optical measurements were combined with cylinder pressure-based combustion analysis, including ignition delay and premixed burn duration, to validate the global behavior of the surrogate.
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Technical Paper

Autoignition and Combustion of ULSD and JP8 during Cold Starting of a High Speed Diesel Engine

2017-03-28
2017-01-0797
Cold starting problems of diesel engines are caused mainly by the failure of the auto-ignition process or the subsequent combustion of the rest of the charge. The problems include long cranking periods and combustion instability leading to an increase in fuel consumption in addition to the emission of undesirable unburned hydrocarbons which appear in the exhaust as white smoke. The major cause of these problems is the low temperature and pressure of the charge near the end of the compression stroke and/or the poor ignition quality of the fuel. This paper presents the results of an experimental investigation of cold starting of a high speed diesel engine with ULSD (Ultra Low Sulphur Diesel) and JP8 (Jet Propulsion) fuels at ambient temperature (25°C). A detailed analysis is made of the autoignition and combustion of the two fuels in the first few cycles in the cold start transient. In addition, a comparison is made between these processes for the two fuels during idle operation.
Technical Paper

Combustion and Emissions Characteristics of JP-8 Blends and ULSD #2 with Similar CN in a Direct Injection Naturally Aspirated Compression Engine

2013-04-08
2013-01-1682
"The Single Fuel Forward Policy" legislation enacted in the United States mandates that deployed U.S. military ground vehicles must be operable with aviation fuel (JP-8). This substitution of JP-8 for diesel raises concerns about the compatibility of this fuel with existing reciprocating piston engine systems. This study investigates the combustion, emissions, and performance characteristics of blends of JP-8 and Ultra Low Sulfur Diesel (ULSD) fuels with similar cetane numbers (CN), 48 (JP-8) and 47(ULSD), respectively, in a direct injection (DI) compression ignition engine over the load range of 3-8 bar imep at 1400 rpm. The results showed that JP-8 blends and ULSD had ignition delays ranging from approximately 1.0-1.4 ms and an average combustion duration time in the range of 47-65 CAD. Cylinder maximum heat flux values were found to be between 2.0 and 4.4 MW/m₂, with radiation flux increasing much faster than convection flux while increasing the imep.
Journal Article

Comparison of In-Cylinder Soot Evolution in an Optically Accessible Engine Fueled with JP-8 and ULSD

2012-04-16
2012-01-1315
Due to the single fuel concept implemented by the US military, the soot production of diesel engines fueled with JP-8 has important implications for military vehicle visual signature and survivability. This work compares in-cylinder soot formation and oxidation of JP-8 and ULSD in a small-bore, optical diesel engine. Experimental engine-out soot emission measurements are compared to crank-angle resolved two-color measurements of soot temperature and optical thickness, KL. A 3-D chemical kinetic-coupled CFD model with line of sight integration is employed in order to investigate the soot distribution in a 2-D projection associated with the imaging plane, as well as to aid in interpreting the third dimension along the optical depth which is not available within the experimental work. The study also examines the effect of volatility on soot emission characteristics by CFD simulation.
Technical Paper

Comparison of the Lift-Off Lengths Obtained by Simultaneous OH-LIF and OH* Chemiluminescence Imaging in an Optical Heavy-Duty Diesel Engine

2015-09-06
2015-24-2418
The presence of OH radicals as a marker of the high temperature reaction region usually has been used to determine the lift-off length (LOL) in diesel engines. Both OH Laser Induced Fluorescence (LIF) and OH* chemiluminescence diagnostics have been widely used in optical engines for measuring the LOL. OH* chemiluminescence is radiation from OH being formed in the exited states (OH*). As a consequence OH* chemiluminescence imaging provides line-of-sight information across the imaged volume. In contrast, OH-LIF provides information on the distribution of radicals present in the energy ground state. The OH-LIF images only show OH distribution in the thin cross-section illuminated by the laser. When both these techniques have been applied in earlier work, it has often been reported that the chemiluminescence measurements result in shorter lift-off lengths than the LIF approach.
Journal Article

Development of JP-8 Surrogates and their Validation using Ignition Quality Tester

2014-04-15
2014-01-9077
This paper presents a new approach for the development of six different JP-8 surrogates for application in diesel cycle simulation. The approach involves a step-wise formulation of 2-, 3-, and 4-component surrogates from a list of pure compounds which are selected based on several criteria. A MATLAB code is developed and is used in conjunction with the Ignition Quality Tester (IQT) and HYSYS software in order to formulate optimal surrogates. The first part of the results shows a comparison between the calculated and the measured DCNs for six surrogates. The differences in the properties such as the density, volatility, lower heating value, H/C ratio, molecular weight, and threshold sooting index of the surrogates and the JP-8 are also highlighted. This is followed by the evaluation of the surrogates with respect to the target JP-8 fuel. The evaluation is made in terms of ignition delays and the rate of heat release at three different IQT test temperatures.
Technical Paper

Diesel Engine Cold Start Combustion Instability and Control Strategy

2001-03-05
2001-01-1237
Combustion instability and white smoke emissions are serious problems during cold starting of diesel engines. In this investigation, a model has been applied to predict misfiring based on an analysis of the autoignition process. The effect of injection timing on combustion instability during the cold start transient, at different ambient temperatures is investigated, both theoretically and experimentally. Maps have been developed to show the zones where misfiring would occur. The experimental work was conducted on a direct injection heavy-duty diesel engine in a cold room. The room temperature covered a range from 21 ° C to -10 ° C. The cycle-by-cycle data analysis was made and results plotted on the developed maps. The experimental results correlated fairly well with the model prediction. Based on the analysis, a new strategy for cold starting can be developed to reduce combustion instability and white smoke emissions.
Technical Paper

Diesel Engine Cold Starting: White Smoke

1992-02-01
920032
A method to calculate white smoke during starting was developed using a total balance of fuel injected and fuel burned. An accurate needle lift sensor with an in situ calibration was designed and used to measure cyclic fuel injection. The effects of ambient temperature, fuel type, injection timing and the number of repeated starting attempts were studied with regard to white smoke formation, cyclic fuel injection and fuel burned. It was found that the colder the ambient temperature, the less unburned fuel was emitted to the atmosphere due to the decrease in cyclic fuel injection. The more volatile the fuel, the easier it was to start the engine at low temperatures, and the less white smoke was produced. Earlier timing of fuel injection during starting resulted in an increased likelihood of engine starting and less white smoke formation.
Technical Paper

Direct Injection Compression Ignition Engine: Cold Start on Gasoline and Diesel

2017-03-28
2017-01-0699
The superior fuel economy of direct injection internal combustion engines (diesel and gasoline) is related to use of a high compression ratio to auto-ignite the fuel and the overall lean combustible mixture. Two of the major problems in diesel engine emissions are the NOx and soot emissions, which are caused by the heterogeneity of the charge and the properties of the diesel fuel. Conventional Direct Injection Spark Ignition Gasoline engines don't have these problems because of the fuel properties particularly its volatility. However, its efficiency and specific power output are limited by the knock, knock produced preignition and the sporadic preignition phenomenon. The Gasoline Direct Injection Compression Ignition (GDICI) engine combines the superior features of the two engines by increasing the compression ratio and use of gasoline as a fuel.
Technical Paper

Effect of Different Biodiesel Blends on Autoignition, Combustion, Performance and Engine-Out Emissions in a Single Cylinder HSDI Diesel Engine

2009-04-20
2009-01-0489
The effects of different blends of Soybean Methyl Ester (biodiesel) and ultra low sulfur diesel (ULSD) fuel: B-00 (ULSD), B-20, B-40, B-60, B-80 and B-100 (biodiesel); on autoignition, combustion, performance, and engine out emissions of different species including particulate matter (PM) in the exhaust, were investigated in a single-cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated at 1500 rpm under simulated turbocharged conditions at 5 bar IMEP load with varied injection pressures at a medium swirl of 3.77 w ithout EGR. Analysis of test results was done to determine the role of biodiesel percentage in the fuel blend on the basic thermodynamic and combustion processes under fuel injection pressures ranging from 600 bar to 1200 bar.
Journal Article

Effect of Swirl Ratio and Wall Temperature on Pre-lnjection Chemiluminescence During Starting of an Optical Diesel Engine

2009-11-02
2009-01-2712
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
Technical Paper

Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine

2008-04-14
2008-01-1071
This paper presents an experimental investigation conducted to determine the parameters that control the behavior of autoignition in a small-bore, single-cylinder, optically-accessible diesel engine. Depending on operating conditions, three types of autoignition are observed: a single ignition, a two-stage process where a low temperature heat release (LTHR) or cool flame precedes the main premixed combustion, and a two-stage process where the LTHR or cool flame is separated from the main heat release by an apparent negative temperature coefficient (NTC) region. Experiments were conducted using commercial grade low-sulfur diesel fuel with a common-rail injection system. An intensified CCD camera was used for ultraviolet imaging and spectroscopy of chemiluminescent autoignition reactions under various operating conditions including fuel injection pressures, engine temperatures and equivalence ratios.
Technical Paper

Impact of Biodiesel Blends on In-cylinder Soot Temperature and Concentrations in a Small-Bore Optical Diesel Engine

2012-04-16
2012-01-1311
Biodiesel is a desirable alternative fuel for the diesel engine due to its low engine-out soot emission tendency. When blended with petroleum-based diesel fuels, soot emissions generally decrease in proportion to the volume fraction of biodiesel in the mixture. This paper presents an experimental investigation of biodiesel impact on in-cylinder soot temperature and concentrations in a single-cylinder, small-bore, optical access, compression ignition engine. While in-cylinder soot measurements have been widely performed with two-color thermometry implemented on digital cameras, their finite dynamic range limits the observation of soot due to its dramatically different radiation intensities. To expand the dynamic range of two-color measurements, this investigation utilizes three cameras. A high-speed CMOS color camera with a wide-band Bayer filter is used to obtain simultaneous measurements of soot temperature and KL factor for high intensity soot clouds within one cycle.
Technical Paper

Investigation of Low-Temperature Combustion in an Optical Engine Fueled with Low Cetane Sasol JP-8 Fuel Using OH-PLIF and HCHO Chemiluminescence Imaging

2013-04-08
2013-01-0898
Low cetane JP-8 fuels have been identified as being difficult to use under conventional diesel operation. However, recent focus on low-temperature combustion (LTC) modes has led to an interest in distillate hydrocarbon fuels having high volatility and low autoignition tendency. An experimental study is performed to evaluate low-temperature combustion processes in a small-bore optically-accessible diesel engine operated in a partially-premixed combustion mode using low-cetane Sasol JP-8 fuel. This particular fuel has a cetane number of 25. Both single and dual injection strategies are tested. Since long ignition delay is a consequence of strong autoignition resistance, under the conditions examined, low cetane Sasol JP-8 combustion can only take place with a double injection strategy: one pilot injection event in the vicinity of exhaust TDC and one main injection event near firing TDC.
Technical Paper

Optical and Numerical Investigation of Pre-Injection Reactions and Their Effect on the Starting of a Diesel Engine

2009-04-20
2009-01-0648
Ultraviolet chemiluminescence has been observed in a diesel engine cyclinder during compression, but prior to fuel injection under engine starting conditions. During a portion of the warm-up sequence, the intensity of this emission exhibits a strong correlation to the phasing of the subsequent combustion. Engine exhaust measurements taken from a continuously misfiring, motored engine confirm the generation of formaldehyde (HCHO) in such processes. Fractions of this compound are expected to be recycled as residual to participate in the following combustion cycle. Spectral measurements taken during the compression period prior to fuel injection match the features of Emeleus' cool flame HCHO bands that have been observed during low temperature heat release reactions occurring in lean HCCI combustion. That the signal from the OH* bands is weak implies a buildup of HCHO during compression.
Technical Paper

Performance of JP-8 Unified Fuel in a Small Bore Indirect Injection Diesel Engine for APU Applications

2012-04-16
2012-01-1199
Recent legislation entitled “The Single Fuel Forward Policy” mandates that all vehicles deployed by the US military be operable with aviation fuel (JP-8). Therefore, the authors are conducting an investigation into the influence of JP-8 on a diesel engine's performance. The injection, combustion, and performance of JP-8, 20-50% by weight in ULSD (diesel no.2) mixtures (J20-J50) produced at room temperature, were investigated in a small indirect injection, high compression ratio (24.5), 77mm separate combustion chamber diesel engine. The effectiveness of JP8 for application in an auxiliary power unit (APU) at continuous operation (100% load) of 4.78bar bmep/2400rpm was investigated. The blends had an ignition delay of approximately 1.02ms that increased slightly in relation to the amount of JP-8 introduced. J50 and diesel no.2 exhibited similar characteristics of heat release, the premixed phase being combined with the diffusion combustion.
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Simulation and Experimental Measurement of CO2*, OH* and CH2O* Chemiluminescence from an Optical Diesel Engine Fueled with n-Heptane

2013-09-08
2013-24-0010
A means of validating numerical simulations has been developed which utilizes chemiluminescence measurements from an internal combustion engine. By incorporating OH*, CH2O* and CO2* chemiluminescence sub-mechanisms into a detailed n-heptane reaction mechanism, excited species concentration and chemiluminescence light emission were calculated. The modeled line-of-sight chemiluminescence emission allows a direct comparison of simulation results to experimentally measured chemiluminescence images obtained during combustion in an optically accessible compression ignition engine using neat n-heptane fuel. The spray model was calibrated using in-cylinder liquid penetration length Mie scattering measurements taken from the jets of the high-pressure piezo injector.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
X