Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Feasibility of Reusable Vehicle Modeling:Application to Hybrid Vehicles

2004-03-08
2004-01-1618
Many of today's vehicle modeling tools are good for simulation, but they provide rather limited support for model building and management. Setting up a simulation model requires more than writing down state equations and running them on a computer. The role of a model library is to manage the physics of the system and allow users to share and reuse component models. In this paper, we describe how modern software techniques can be used to support modeling and design activities; the objective is to provide better system models in less time by assembling these system models in a “plug and play” architecture. With the introduction of hybrid electric vehicles, the number of components that can populate a model has increased considerably, and more components translates into more drivetrain configurations. To address these needs, we explain how users can simulate a large number of drivetrain configurations.
Technical Paper

Fuel Economy Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains

2006-04-03
2006-01-0665
In 2002, the U.S. Department of Energy (DOE) launched FreedomCAR, which is a partnership with automakers to advance high-technology research needed to produce practical, affordable advanced vehicles that have the potential to significantly improve fuel economy in the near-term. Advanced materials (including metals, polymers, composites, and intermetallic compounds) can play an important role in improving the efficiency of transportation vehicles. Weight reduction is one of the most practical ways of increasing vehicle fuel economy while reducing exhaust emissions. In this paper, we evaluate the impact of vehicle mass reduction for several vehicle platforms and advanced powertrain technologies, including Internal Combustion Engine (ICE) Hybrid Electric Vehicles (HEVs) and fuel cell HEVs, in comparison with conventional vehicles. We also explain the main factors influencing the fuel economy sensitivity.
Technical Paper

Integrating Data, Performing Quality Assurance, and Validating the Vehicle Model for the 2004 Prius Using PSAT

2006-04-03
2006-01-0667
Argonne National Laboratory (ANL), working with the FreedomCAR Partnership, maintains the hybrid vehicle simulation software, Powertrain System Analysis Toolkit (PSAT). The importance of component models and the complexity involved in setting up optimized control laws require validation of the models and control strategies. Using its Advanced Powertrain Research Facilities (APRF), ANL thoroughly tested the 2004 Toyota Prius to validate the PSAT drivetrain. In this paper, we will first describe the methodology used to quality check test data. Then, we will explain the validation process leading to the simulated vehicle control strategy tuning, which is based on the analysis of the differences between test and simulation. Finally, we will demonstrate the validation of PSAT Prius component models and control strategy, using APRF vehicle test data.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
X