Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

Contribution of Cold and Hot Start Transients in Engine-out HC Emissions

Engine-out HC emissions were investigated during cold and hot starts. The tests were conducted at room temperature, on a new Chrysler 2.4-L, 4-cylinder, 16-valve, DOHC, multipoint-port-fuel-injection gasoline engine. Real time engine-out HC emissions were measured using Cambustion Fast Response Flame Ionization Detector (FRFID). Sources of unburned hydrocarbon emissions were discussed in details. Unburned hydrocarbons emitted during the cold-start were much higher than the hot-start. Cylinder-to-cylinder variation was investigated. A fuel inventory program was used to characterize total injected fuel, burned fuel, unburned HC, and fuel unaccounted for (mainly accumulated fuel in the engine system and CO). A fuel interrupt test was run to examine the possibility of burning the leftover fuel after the fuel shut-off. The contribution of the cold and hot start modes in engine-out HC emissions was determined.
Technical Paper

Effect of Cetane Number with and without Additive on Cold Startability and White Smoke Emissions in a Diesel Engine

I The effect of Cetane Number (CN) of the fuel and the addition of cetane improvers on the cold starting and white smoke emissions of a diesel engine was investigated. Tests were conducted on a single-cylinder, four-stroke-cycle, air-cooled, direct-injection, stand-alone diesel engine in a cold room at ambient temperatures ranging from 25 °C to - 5 °C. Five fuels were used. The base fuel has a CN of 49.2. The CN of the base fuel was lowered to 38.7 and 30.8 by adding different amounts of aromatic hydrocarbons. Iso-octyl nitrate is added to the high aromatic fuels in order to increase their CN to 48.6 and 38.9 respectively. Comparisons are made between the five fuels to determine the effect of CN and the additive on cylinder peak pressure, heat release rate, cold start-ability, combustion instability, hydrocarbon emissions and solid and liquid particulates.
Technical Paper

Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints during PFI Engine Startup Process

Wall-wetting due to liquid fuel film motion and fuel droplet impingement on combustion chamber walls is a major source of unburned hydrocarbons (UBHC), and is a concern for oil dilution in PFI engines. An experimental study was carried out to investigate the effects of injection timing, a charge motion control device, and the matching of injector with port geometry, on the “footprints” of liquid fuel inside the combustion chamber during the PFI engine starting process. Using a gasoline-soluble dye and filter paper deployed on the cylinder liner and piston top land surfaces to capture the liquid fuel footprints, the effects of the mixture formation processes on the wetted footprints can be qualitatively and quantitatively examined by comparing the wetted footprint locations and their color intensities. Real-time filming of the development of wetted footprints using a high-speed camera can also show the time history of the fuel wetting process inside an optically accessible engine.
Technical Paper

Emissions Trade-Off and Combustion Characteristics of a High-Speed Direct Injection Diesel Engine

The emissions trade-off and combustion characteristics of a high speed, small-bore, direct injection, single cylinder, diesel engine are investigated at three different load conditions. The experiments covered a wide range of parameters including the injection pressure, exhaust gas recirculation (EGR) rate and swirl ratio (Sw). The effects of each parameter on the ignition delay (ID), apparent rate of energy release (ARER), NOx, Bosch smoke unit (BSU), CO and hydrocarbons are investigated. The results show that the NOx emission dropped continuously with the increase in EGR (up to 55%), but with increasing smoke emission in a classical trade-off relationship. The increase in injection pressure generally reduced smoke with NOx penalty; however, the NOx penalty decreased at higher EGR. There also appears to be an increase in the cool flame intensity at the high EGR rates. Applying swirl at high EGR rate and high injection pressure conditions further reduced smoke emissions.
Technical Paper

Investigation of Diesel Spray Primary Break-up and Development for Different Nozzle Geometries

The nozzle configuration for an injector is known to have an important effect on the fuel atomization. A comprehensive experimental and numerical investigation has been performed to determine the influence of various internal geometries on the primary spray breakup and development using the electronically controlled high-pressure diesel injection systems. Different types of multi-hole minisac and VCO nozzles with cylindrical and tapered geometries, and different types of single-hole nozzles with defined grades of Hydro Grinding (HG) were investigated. The global characteristics of the spray, including spray angle, spray tip penetration and spray pattern were measured from the spray images with a high-speed drum camera. A long-distance microscope with a pulsed-laser as the optical shutter was used to magnify the diesel spray at the nozzle hole vicinity. A CFD analysis of the internal flow through various nozzle geometries has been carried out with a commercial code.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

Spectral Analysis and Chemiluminescence Imaging of Hydrogen Addition to HSDI Diesel Combustion Under Conventional and Low-Temperature Conditions

Late-injection low-temperature diesel combustion is found to further reduce NOx and soot simultaneously. The combustion phenomena and detail chemical kinetics are studied with high speed spray/combustion images and time-resolved spectroscopy analysis in a rapid compression machine (RCM) with a small bowl combustion chamber. High swirl and high EGR condition can be achieved in the RCM; variable injection pressure and injection timing is supplied by the high-pressure common-rail fuel injection system. Effect of small amount of premix hydrogen gas on diesel combustion is also studied in the RCM. A hydrogen injector is located in the upstream of air inlet for delivery small amount and premixed hydrogen gas into cylinder just before the compression stroke. The ignition delay is studied both from the pressure curves and the chemiluminescence images.
Technical Paper

“OPERAS” In Advanced Diesel Engines for Commercial and Military Applications

Advanced diesel engines developed for the commercial market need to be adapted to the military requirements by OPERAS (Optimizing the injection pressure P, the Exhaust gas recirculation E, injection events Retard and/or Advance and the swirl ratio S). The different after treatment devices, already used or expected to be applied to diesel engines, require feed gases of appropriate properties for their efficient operation. To produce these gases some OPERAS are needed to control the diesel combustion process. Since military vehicles do not need the after treatment devices, the OPERAS of the commercial engines should be modified to meet the military requirements for high power density, better fuel economy, reduction of parasitic losses caused by the cooled EGR system, and reduction of invisible black and white smoke in the field.