Refine Your Search

Topic

Author

Search Results

Technical Paper

A Controller for a Spark Ignition Engine with Bi-Fuel Capability

1994-10-01
942004
A bi-fuel engine with the ability to run optimally on both compressed natural gas (CNG) and gasoline is being developed. Such bi-fuel automotive engines are necessary to bridge the gap between gasoline and natural gas as an alternative fuel while natural gas fueling stations are not yet common enough to make a dedicated natural gas vehicle practical. As an example of modern progressive engine design, a Saturn 1.9 liter 4-cylinder dual overhead cam (DOHC) engine has been selected as a base powerplant for this development. Many previous natural gas conversions have made compromises in engine control strategies, including mapped open-loop methods, or resorting to translating the signals to or from the original controller. The engine control system described here, however, employs adaptive closed-loop control, optimizing fuel delivery and spark timing for both fuels.
Technical Paper

A Correlation Study Between Two Heavy-Duty Vehicle Chassis Dynamometer Emissions Testing Facilities

1993-08-01
931788
A correlation study of vehicle exhaust emissions measurements was conducted by the West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory and the Los Angeles County Metropolitan Transportation Authority (MTA) Emissions Testing Facility. A diesel fueled transit bus was tested by both chassis dynamometer emissions testing laboratories. Exhaust emissions were sampled from the tested vehicle during the operation of the Federal Transit Administration (FTA) Central Business District (CBD) testing cycle. Data of gaseous and particulate matter emissions was obtained at each testing laboratory. The emissions results were compared to evaluate the effects of different equipment, test procedures, and drivers on the measurements of exhaust emissions of heavy-duty vehicles operated on a chassis dynamometer.
Technical Paper

A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine

1993-11-01
932953
The objective of this study was to evaluate iso-butanol (C4H9OH) as an alternative fuel for spark ignition engines. Unlike methanol (CH3OH) and ethanol (C2H5OH), iso-butanol has not been extensively studied in the past as either a fuel blend candidate with gasoline or straight fuel. The performance of a single cylinder engine (ASTM=CFR) was studied using alcohol-gasoline blends under different input parameters. The engine operating conditions were: three carburetor settings (three different fuel flow rates), spark timings of 5°, 10°, 15°, 20°, and 25° BTDC, and a range of compression ratios from a minimum of 7.5 to a maximum of 15 in steps of one depending on knock. The fuels tested were alcohol-gasoline blends having 5%, 10%, 15%, and 20% of iso-butanol, ethanol, and methanol. And also as a baseline fuel, pure gasoline (93 ON) was used. The engine was run at a constant speed of 800 RPM.
Technical Paper

An Elasticity Solution of Angle-Ply Laminated Composite Shells Based on a Higher-Order FE Analysis

1994-03-01
940617
In the case of advanced light weight material applications, the design of such components, in many cases, are based on applied surface tractions These surface loads can be caused by various means. When wind effects are present these tractions can be due to pressure, suction or drag. In the case of underwater applications, hydrostatic pressure and friction caused by moving against water current needs to be considered in the design. These are some of the traction load applications, a design engineer has to deal with in his advanced material applications. In contrast to the conventional materials, the modern structures made of highly directional dependent material properties, respond the applied loads and environment in an unpredicted way, so that, a detail analysis and design is always necessary. Hence in the present study a higher-order shear deformation formulation is developed to calculate the distribution of stresses accurately in angle-ply laminated shells of revolution.
Journal Article

An Experimental Investigation of the Transient Effects Associated with Wing Deployment During Ballistic Flight

2011-10-18
2011-01-2647
Mortar weapons systems have existed for more than five hundred years. Though modern tube-launched rounds are far more advanced than the cannon balls used in the 15th century, the parabolic trajectory and inability to steer the object after launch remains the same. Equipping the shell with extending aerodynamic surfaces transforms the unguided round into a maneuverable munition with increased range [1] and precision [2]. The subject of this work is the experimental analysis of transient aerodynamic behavior of a transforming tube-launched unmanned aerial vehicle (UAV) during transition from a ballistic trajectory to winged flight. Data was gathered using a series of wind tunnel experiments to determine the lift, drag, and pitching moment exerted on the prototype in various stages of wing deployment. Flight models of the design were broken down into three configurations: “round”, “transforming”, and “UAV”.
Technical Paper

Analysis of Compressed Air and Process Heating Systems - A Case Study from Automotive Parts Manufacturer in Mexico

2012-04-16
2012-01-0323
Automotive industries in the US and around the world have enormous impact on the economy of each country. Not just the major vehicle manufacturer, but all the other companies in the supply chain are equally important. This was evident with the earthquake and Tsunami that happened in March 2011. Because of the massive destruction at suppliers' facilities, the automakers in the US and other countries struggled to get the necessary parts and supplies. This created a ripple effect throughout the world and led to the closure of several automakers' facilities for a long time. Thus, the automotive supply chains are as important as the main automotive manufacturing facilities. Since these suppliers produce a lot of parts and supplies, the corresponding energy usage is also significant. The current research is focused on compressed air and process heating system analysis at one of the automotive parts manufacturer in Mexico.
Technical Paper

Application of the New City-Suburban Heavy Vehicle Route (CSHVR) to Truck Emissions Characterization

1999-05-03
1999-01-1467
Speed-time and video data were logged for tractor-trailers performing local deliveries in Akron, OH. and Richmond, VA. in order to develop an emissions test schedule that represented real truck use. The data bank developed using these logging techniques was used to create a Yard cycle, a Freeway cycle and a City-Suburban cycle by the concatenation of microtrips. The City-Suburban driving cycle was converted to a driving route, in which the truck under test would perform at maximum acceleration during certain portions of the test schedule. This new route was used to characterize the emissions of a 1982 Ford tractor with a Cummins 14 liter, 350 hp engine and a 1998 International tractor with a Cummins 14 liter, 435 hp engine. Emissions levels were found to be repeatable with one driver and the driver-to-driver variation of NOx was under 4%, although the driver-to-driver variations of CO and PM were higher.
Technical Paper

Characterization of Emissions from Hybrid-Electric and Conventional Transit Buses

2000-06-19
2000-01-2011
Hybrid-electric transit buses offer benefits over conventional transit buses of comparable capacity. These benefits include reduced fuel consumption, reduced emissions and the utilization of smaller engines. Factors allowing for these benefits are the use of regenerative braking and reductions in engine transient operation through sophisticated power management systems. However, characterization of emissions from these buses represents new territory: the whole vehicle must be tested to estimate real world tailpipe emissions levels and fuel economy. The West Virginia University Transportable Heavy Duty Emissions Testing Laboratories were used to characterize emissions from diesel hybrid-electric powered as well as diesel and natural gas powered transit buses in Boston, MA and New York City.
Technical Paper

Chassis Dynamometer Emissions Characterization of a Urea-SCR Transit Bus

2012-06-01
2011-01-2469
West Virginia University characterized the emissions and fuel economy performance of a 30-foot 2010 transit bus equipped with urea selective catalytic reduction (u-SCR) exhaust aftertreatment. The bus was exercised over speed-time driving schedules representative of both urban and on-highway activity using a chassis dynamometer while the exhaust was routed to a full-scale dilution tunnel with research grade emissions analyzers. The Paris speed-time driving schedule was used to represent slow urban transit bus activity while the Cruise driving schedule was used to represent on-highway activity. Vehicle weights representative of both one-half and empty passenger loading were evaluated. Fuel economy observed during testing with the urban driving schedule was significantly lower (55%) than testing performed with the on-highway driving schedule.
Technical Paper

Chassis Test Cycles for Assessing Emissions from Heavy Duty Trucks

1994-10-01
941946
Recent interest in the effect of engine life on vehicle emissions, particularly those from alternately fueled engines, has led to a need to test heavy duty trucks in the field over their lifetime. West Virginia University has constructed two transportable laboratories capable of measuring emissions as a vehicle is driven through a transient test schedule. Although the central business district (CBD) cycle is well accepted for bus testing, no time-based schedule suited to the testing of class 8 trucks with unsynchronized transmissions is available. The Federal Test Procedure for certifying heavy duty engines can be translated with some difficulty into a flat road chassis cycle although original data clearly incorporated unpredictable braking and inclines. Two methods were attempted for this purpose, but only an energy conservation method proved practical.
Technical Paper

Comparison of Particulate Matter Emissions from Different Aftertreatment Technologies in a Wind Tunnel

2013-09-08
2013-24-0175
Stringent emission regulations have forced drastic technological improvements in diesel after treatment systems, particularly in reducing Particulate Matter (PM) emissions. Those improvements generally regard the use of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and lately also the use of Selective Catalyst Reduction (SCR) systems along with improved engine control strategies for reduction of NOx emissions from these engines. Studies that have led to these technological advancements were made in controlled laboratory environment and are not representative of real world emissions from these engines or vehicles. In addition, formation and evolution of PM from these engines are extremely sensitive to overall changes in the dilution process.
Journal Article

Control and Testing of a 2-Mode Front-Wheel-Drive Hybrid-Electric Vehicle

2012-04-16
2012-01-1192
The new General Motors 2-mode hybrid transmission for front-wheel-drive vehicles has been incorporated into a 2009 Saturn Vue by the West Virginia University EcoCAR team. The 2-mode hybrid transmission can operate in either one of two electrically variable transmission modes or four fixed gear modes although only the electrically variable modes were explored in this paper. Other major power train components include a GM 1.3L SDE turbo diesel engine fueled with B20 biodiesel and an A123 Systems 12.9 kWh lithium-ion battery system. Two additional vehicle controllers were integrated for tailpipe emission control, CAN message integration, and power train hybridization control. Control laws for producing maximum fuel efficiency were implemented and include such features as engine auto-stop, regenerative braking and optimized engine operation. The engine operating range is confined to a high efficiency area that improves the overall combined engine and electric motor efficiency.
Technical Paper

Defining the Hybrid Drive System for the WVU ClearVue Crossover Sport Utility Vehicle

2010-04-12
2010-01-0841
West Virginia University (WVU) is a participant in EcoCAR - The NeXt Challenge, an Advanced Vehicle Technology Competition sponsored by the U.S. Department of Energy, and General Motors Corporation. During the first year of the competition, the goal of the WVU EcoEvolution Team was to design a novel hybrid-electric powertrain for a 2009 Saturn Vue to increase pump-to-wheels fuel economy, reduce criteria tailpipe emissions and well-to-wheels greenhouse gas emissions (GHG) while maintaining or improving performance and utility. To this end, WVU designed a 2-Mode split-parallel diesel-electric hybrid system. Key elements of the hybrid powertrain include a General Motors 1.3L SDE Turbo Diesel engine, a General Motors Corporation 2-Mode electrically variable transmission (EVT) and an A123 Systems Lithium-Ion battery system. The engine will be fueled on a blend of 20% soy-derived biodiesel and 80% petroleum-derived ultra-low sulfur diesel fuel (B20).
Technical Paper

Determination of Heavy-Duty Vehicle Energy Consumption by a Chassis Dynamometer

1992-11-01
922435
The federal emission standards for heavy duty vehicle engines require the exhaust emissions to be measured and calculated in unit form as grams per break horse-power-hour (g/bhp-hr). Correct emission results not only depend on the precise emission measurement but also rely on the correct determination of vehicle energy consumption. A Transportable Heavy-Duty Vehicle Emission Testing Laboratory (THDVETL) designed and constructed at West Virginia University provides accurate vehicle emissions measurements in grams over a test cycle. This paper contributes a method for measuring the energy consumption (bhp-hr) over the test cycle by a chassis dynamometer. Comparisons of analytical and experimental results show that an acceptable agreement is reached and that the THDVETL provides accurate responses as the vehicle is operated under transient loads and speeds. This testing laboratory will have particular value in comparing the behavior of vehicles operating on alternative fuels.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

Effect on Emissions of Multiple Driving Test Schedules Performed on Two Heavy-Duty Vehicles

2000-10-16
2000-01-2818
Chassis based emissions characterization of heavy-duty vehicles has advanced over the last decade, but the understanding of the effect of test schedule on measured emissions is still poor. However, this is an important issue because the test schedule should closely mimic actual vehicle operation or vocation. A wide variety of test schedules was reviewed and these cycles were classified as cycles or routes and as geometric or realistic. With support from the U.S. Department of Energy Office of Transportation Technologies (DOE/OTT), a GMC box truck with a Caterpillar 3116 engine and a Peterbilt over the road tractor-trailer with a Caterpillar 3406 engine were exercised through a large number of cycles and routes. Test weight for the GMC was 9,980 kg and for the Peterbilt was 19,050 kg. Emissions characterization was performed using a heavy-duty chassis dynamometer, with a full-scale dilution tunnel, analyzers for gaseous emissions, and filters for PM emissions.
Technical Paper

Effects of Oil Aging on Laboratory Measurement of Emissions from a Legacy Heavy-duty Diesel Engine

2011-04-12
2011-01-1163
Diesel engines are highly reliable, durable and are used for a wide range of applications with low fuel usage owing to its higher thermal efficiency compared to other mobile power sources. Heavy-duty diesel engines are used for both on-road and off-road applications and dominate the heavy-duty engine segment of the United States transportation market. Due to their high reliability, there are considerable numbers of on-road legacy heavy-duty diesel engine fleets still in use in the United States. These engines are relatively higher oxides of nitrogen (NOx) and particulate matter (PM) producers than post 2007 model year diesel engines. There have been various emission certification or verification programs which are carried out in states like California and Texas for different aftermarket retrofit devices, fuels and additive technologies for reducing NOx and PM emissions from these legacy diesel engines.
Technical Paper

Emissions Comparisons of Twenty-Six Heavy-Duty Vehicles Operated on Conventional and Alternative Fuels

1993-11-01
932952
Gaseous and particulate emissions from heavy-duty vehicles are affected by fuel types, vehicle/engine parameters, driving characteristics, and environmental conditions. Transient chassis tests were conducted on twenty-six heavy-duty vehicles fueled with methanol, compressed natural gas (CNG), #1 diesel, and #2 diesel, using West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory. The vehicles were operated on the central business district (CBD) testing cycle, and regulated emissions of carbon monoxide (CO), total hydrocarbon (HC), nitrogen oxides (NOx), and particulate matter (PM) were measured. Comparisons of regulated emissions results revealed that the vehicles powered on methanol and CNG produced much lower particulate emissions than the conventionally fueled vehicles.
Technical Paper

Exhaust Emissions from In-Use Heavy Duty Vehicles Tested on a Transportable Transient Chassis Dynamometer

1992-11-01
922436
Exhaust gas composition and particulate matter emission levels were obtained from in-use heavy duty transit buses powered by 6V-92TA engines with different fuels. Vehicles discussed in this study were pulled out of revenue service for a day, in Phoenix, AZ, Pittsburgh, PA and New York, NY and tested on the Transportable Heavy Duty Vehicle Emissions Testing Laboratory employing a transient chassis dynamometer. All the vehicles, with engine model years ranging from 1982 to 1992, were operated on the Federal Transit Administration Central Business District Cycle. Significant reductions in particulate matter emissions were observed in the 1990-1992 model year vehicles equipped with the trap oxidizer systems. Testing vehicles under conditions that represent “real world” situations confirmed the fact brought to light that emission levels are highly dependent upon the maintenance and operating conditions of the engines.
Technical Paper

Heavy Duty Testing Cycles: Survey and Comparison

1994-11-01
942263
The need to assess the effect of exhaust gas emissions from heavy duty vehicles (buses and trucks) on emission inventories is urgent. Exhaust gas emissions measured during the fuel economy measurement test procedures that are used in different countries sometimes do not represent the in-use vehicle emissions. Since both local and imported vehicles are running on the roads, it is thought that studying the testing cycles of the major vehicle manufacturer countries is worthy. Standard vehicle testing cycles on chassis dynamometer from the United States, Canada, European Community Market, and Japan1 are considered in this study. Each of the tested cycles is categorized as either actual or synthesized cycle and its representativness of the observed driving patterns is investigated. A total of fourteen parameters are chosen to characterize any given driving cycle and the cycles under investigation were compared using these parameters.
X