Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Performance Study of Iso-Butanol-, Methanol-, and Ethanol-Gasoline Blends Using a Single Cylinder Engine

1993-11-01
932953
The objective of this study was to evaluate iso-butanol (C4H9OH) as an alternative fuel for spark ignition engines. Unlike methanol (CH3OH) and ethanol (C2H5OH), iso-butanol has not been extensively studied in the past as either a fuel blend candidate with gasoline or straight fuel. The performance of a single cylinder engine (ASTM=CFR) was studied using alcohol-gasoline blends under different input parameters. The engine operating conditions were: three carburetor settings (three different fuel flow rates), spark timings of 5°, 10°, 15°, 20°, and 25° BTDC, and a range of compression ratios from a minimum of 7.5 to a maximum of 15 in steps of one depending on knock. The fuels tested were alcohol-gasoline blends having 5%, 10%, 15%, and 20% of iso-butanol, ethanol, and methanol. And also as a baseline fuel, pure gasoline (93 ON) was used. The engine was run at a constant speed of 800 RPM.
Technical Paper

Determination of Heavy-Duty Vehicle Energy Consumption by a Chassis Dynamometer

1992-11-01
922435
The federal emission standards for heavy duty vehicle engines require the exhaust emissions to be measured and calculated in unit form as grams per break horse-power-hour (g/bhp-hr). Correct emission results not only depend on the precise emission measurement but also rely on the correct determination of vehicle energy consumption. A Transportable Heavy-Duty Vehicle Emission Testing Laboratory (THDVETL) designed and constructed at West Virginia University provides accurate vehicle emissions measurements in grams over a test cycle. This paper contributes a method for measuring the energy consumption (bhp-hr) over the test cycle by a chassis dynamometer. Comparisons of analytical and experimental results show that an acceptable agreement is reached and that the THDVETL provides accurate responses as the vehicle is operated under transient loads and speeds. This testing laboratory will have particular value in comparing the behavior of vehicles operating on alternative fuels.
Technical Paper

Transient Response in a Dynamometer Power Absorption System

1992-02-01
920252
In order to obtain meaningful analyses of exhaust gas emissions and fuel economy for a heavy duty vehicle from a chassis dynamometer, the accurate simulation of road load characteristics is crucial. The adjusted amount of power to be absorbed by the chassis dynamometer during road driving of the tested vehicle needs to be calculated. In this paper, the performance of the chassis dynamometer under transient load cycle operations is discussed and the transient response of the power absorption system is presented. In addition, the design criteria of the chassis dynamometer used to test heavy duty vehicles under steady and transient load is described.
X