Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Investigation into the Emissions Reduction Performance of an SCR System Over Two Years' In-Use Heavy-Duty Vehicle Operation

2005-04-11
2005-01-1861
Increasingly stringent oxides of nitrogen (NOx) and particulate matter (PM) regulations worldwide have prompted considerable activity in developing emission control technology to reduce the emissions of these two constituents from heavy-duty diesel engines. NOx has come under particular scrutiny by regulators in the US and in Europe with the promulgation of very stringent regulation by both the US Environmental Protection Agency (EPA) and the European Union (EU). In response, heavy-duty engine manufacturers are considering Selective Catalytic Reduction (SCR) as a potential NOx reduction option. While SCR performance has been well established through engine dynamometer evaluation under laboratory conditions, there exists little data characterizing SCR performance under real-world operating conditions over time. This project evaluated the field performance of ten SCR units installed on heavy-duty Class 8 highway and refuse trucks.
Journal Article

Diesel Exhaust Aftertreatment with Scrubber Process: NOx Destruction

2012-05-15
2011-01-2440
Oxides of nitrogen (NOx) emissions, produced by engines that burn fuels with atmospheric air, are known to cause negative health and environmental effects. Increasingly stringent emissions regulations for marine engines have caused newer engines to be developed with inherent NOx reduction technologies. Older marine engines typically have a useful life of over 20 years and produce a disproportionate amount of NOx emissions when compared with their newer counterparts. Wet scrubbing as an aftertreatment method for emissions reduction was applied to ocean-going marine vessels for the reduction of sulfur oxides (SOx) and particulate matter (PM) emissions. The gaseous absorption process was explored in the laboratory as an option for reducing NOx emissions from older diesel engines of harbor craft operating in ports of Houston and Galveston. A scrubber system was designed, constructed, and evaluated to provide the basis for a real-world design.
Technical Paper

Emissions from a Legacy Diesel Engine Exercised through the ACES Engine Test Schedule

2008-06-23
2008-01-1679
Most transient heavy duty diesel emissions data in the USA have been acquired using the Federal Test Procedure (FTP), a heavy-duty diesel engine transient test schedule described in the US Code of Federal Regulations. The FTP includes both urban and freeway operation and does not provide data separated by driving mode (such as rural, urban, freeway). Recently, a four-mode engine test schedule was created for use in the Advanced Collaborative Emission Study (ACES), and was demonstrated on a 2004 engine equipped with cooled Exhaust Gas Recirculation (EGR). In the present work, the authors examined emissions using these ACES modes (Creep, Cruise, Transient and High-speed Cruise) and the FTP from a Detroit Diesel Corporation (DDC) Series 60 1992 12.7 liter pre-EGR engine. The engine emissions were measured using full exhaust dilution, continuous measurement of gaseous species, and filter-based Particulate Matter (PM) measurement.
Technical Paper

Examination of a Heavy Heavy-Duty Diesel Truck Chassis Dynamometer Schedule

2004-10-25
2004-01-2904
Repeatable measurement of real-world heavy-duty diesel truck emissions requires the use of a chassis dynamometer with a test schedule that reasonably represents actual truck use. A new Heavy Heavy-Duty Diesel Truck (HHDDT) schedule has been created that consists of four modes, termed Idle, Creep, Transient and Cruise. The effect of driving style on emissions from the Transient Mode was studied by driving a 400 hp Mack tractor at 56,000 lbs. test weight in fashions termed “Medium”, “Good”, “Bad”, “Casual” and “Aggressive”. Although there were noticeable differences in the actual speed vs. time trace for these five styles, emissions of the important species oxides of nitrogen (NOx) and particulate matter (PM), varied little with a coefficient of variation (COV) of 5.13% on NOX and 10.68% on PM. Typical NOx values for the HHDDT Transient mode ranged from 19.9 g/mile to 22.75 g/mile. The Transient mode which was the most difficult mode to drive, proved to be repeatable.
Technical Paper

Experimental and Error Analysis Investigation into Dilution Factor Equations

2007-04-16
2007-01-0310
As emission regulations become increasingly strict, the need for more accurate sampling systems becomes essential. When calculating emissions from a dilution system, a correction is made to remove the effects of contaminants in the dilution air. The dilution air correction was explored to determine why this correction is needed, when this correction is important, and what methods are available for calculating the dilution factor (DF). An experimental and error analysis investigation into the standard and recently proposed methods for calculating the DF was conducted. Five steady state modes were run on a 1992 Detroit Diesel engine series 60 and the DF from eleven different equations were investigated. The effects of an inaccurate dilution air correction on calculated fuel flow from a carbon balance and the mass emissions was analyzed. The dilution air correction was shown to be important only for hydrocarbons, particulate matter (PM), and CO2.
Technical Paper

Inference of Torque and Power from Heavy-Duty Diesel Engines for On-Road Emissions Monitoring

2002-03-04
2002-01-0614
Increased concerns about the emissions produced from mobile sources have placed an emphasis on the in-use monitoring of on- and off-road vehicles. Measuring the emissions emitted from an in-use vehicle during its operation provides for a rich dataset that is generally too expensive and too time consuming to reproduce in a laboratory setting. Many portable systems have been developed and implemented in the past to acquire in-use emissions data for spark ignited and compression ignited engines. However, the majority of these systems only measured the concentration levels of the exhaust constituents and or reported the results in time-specific (g/s) and or distance-specific (g/km) mass units through knowledge of the exhaust flow. For heavy-duty engines, it is desirable to report the in-use emission levels in brake-specific mass units (g/kW-hr) since that is how the emission levels are reported from engine dynamometer certification testing.
Technical Paper

Low Temperature Combustion with Thermo-Chemical Recuperation

2007-10-29
2007-01-4074
The key to overcoming Low Temperature Combustion (LTC) load range limitations is based on suitable control over the thermo-chemical properties of the in-cylinder charge. The proposed alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel, with different autoignition characteristics, is a reformed product of the primary fuel in the tank. It is proposed in this paper that the secondary fuel is produced using Thermo-Chemical Recuperation (TCR) with steam/fuel reforming. The steam/fuel mixture is heated by sensible heat from the engine exhaust gases in the recuperative reformer, where the original hydrocarbon reacts with water to form a hydrogen rich gas mixture. An equilibrium model developed by Gas Technology Institute (GTI) for n-heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures.
Technical Paper

Nano Particulate Matter Evolution in a CFR1065 Dilution Tunnel

2009-11-02
2009-01-2672
Dual primary full-flow dilution tunnels represent an integral part of a heavy-duty transportable emissions measurement laboratory designed and constructed to comply with US Code of Federal Regulations (CFR) 40 Part 1065 requirements. Few data exist to characterize the evolution of particulate matter (PM) in full scale dilution tunnels, particularly at very low PM mass levels. Size distributions of ultra-fine particles in diesel exhaust from a naturally aspirated, 2.4 liter, 40 kW ISUZU C240 diesel engine equipped with a diesel particulate filter (DPF) were studied in one set of standard primary and secondary dilution tunnels with varied dilution ratios. Particle size distribution data, during steady-state engine operation, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. Measurements were made at four positions that spanned the tunnel cross section after the mixing orifice plate for the primary dilution tunnel and at the outlet of the secondary dilution tunnel.
Journal Article

Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines

2008-04-14
2008-01-1298
As part of the 1998 Consent Decrees concerning alternative ignition strategies between the six settling heavy-duty diesel engine manufacturers and the United States government, the engine manufacturers agreed to perform in-use emissions measurements of their engines. As part of the Consent Decrees, pre- (Phase III, pre-2000 engines) and post- (Phase IV, 2001 to 2003 engines) Consent Decree engines used in over-the-road vehicles were tested to examine the emissions of oxides of nitrogen (NOx) and carbon dioxide (CO2). A summary of the emissions of NOx and CO2 and fuel consumption from the Phase III and Phase IV engines are presented for 30 second “Not-to-Exceed” (NTE) window brake-specific values. There were approximately 700 Phase III tests and 850 Phase IV tests evaluated in this study, incorporating over 170 different heavy duty diesel engines spanning 1994 to 2003 model years. Test vehicles were operated over city, suburban, and highway routes.
X