Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Heavy-Duty Diesel Truck Engine Smoke Opacities at High Altitude and at Sea Level

1991-08-01
911671
A study was conducted by the California Air Resources Board to investigate the effects that altitude has on in-use heavy-duty diesel truck smoke opacities. The understanding of these effects may allow for the establishment of a high altitude opacity standard for diesel trucks operating at or above altitudes of 5800 feet. During a three-week study, 170 heavy-duty diesel trucks were tested at an altitude of 5,820 feet using a test procedure consisting of rolling acceleration and snap idle tests. Eighty-four (84) of these trucks were recaptured and retested at an altitude of 125 feet. Results from a regression analysis indicates that, on average, truck smoke opacities increased by 23 opacity points when tested at altitudes near 6000 feet. Possible high altitude cutpoints and failure rates are also discussed.
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Technical Paper

A Finite Element Modeling Approach for Stability Analysis of Partially Filled Tanker Trucks

1999-11-15
1999-01-3708
The rollover threshold for a partially filled tanker truck carrying fluid cargo is of great importance due to the catastrophic nature of accidents involving such vehicles, particularly when payloads are toxic and flammable. In this paper, a method for determining the threshold of rollover stability of a specific tanker truck is presented using finite element analysis methods. This approach allows the consideration of many variables which had not been fully incorporated in past models, including nonlinear spring behavior and tank flexibility. The program uses simple mechanical pendulums to simulate the fluid sloshing affects, beam elements to match the torsional and bending stiffness of the tank, and spring damper elements to simulate the suspension. The finite element model of the tanker truck has been validated using data taken by the U.S. Army Aberdeen Test Center (ATC) on a M916A1 tractor/ Etnyre model 60PRS 6000 gallon trailer combination.
Technical Paper

A Naturally Aspirated Four Stroke Racing Engine with One Intake and One Exhaust Horizontal Rotary Valve per Cylinder and Central Direct Injection and Ignition by Spark or Jet

2015-03-10
2015-01-0006
The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. The dual rotary valve design is applied to a racing engine naturally aspirated V-four engine of 1000cc displacement, gasoline fuelled with central direct injection and spark ignition. The engine is then modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The improved design produces much larger power densities than the version of the engines with traditional poppet valves revving at higher speeds, with reduced frictional losses, and with larger gas exchange areas while also improving the fuel conversion efficiency thanks to the sharpness of opening or closing events.
Technical Paper

A Parametric Study of Knock Control Strategies for a Bi-Fuel Engine

1998-02-23
980895
Until a proper fueling infrastructure is established, vehicles powered by natural gas must have bi-fuel capability in order to avoid a limited vehicle range. Although bi-fuel conversions of existing gasoline engines have existed for a number of years, these engines do not fully exploit the combustion and knock properties of both fuels. Much of the power loss resulting from operation of an existing gasoline engine on compressed natural gas (CNG) can be recovered by increasing the compression ratio, thereby exploiting the high knock resistance of natural gas. However, gasoline operation at elevated compression ratios results in severe engine knock. The use of variable intake valve timing in conjunction with ignition timing modulation and electronically controlled exhaust gas recirculation (EGR) was investigated as a means of controlling knock when operating a bi-fuel engine on gasoline at elevated compression ratios.
Technical Paper

A Study of the Relative Benefits of On-Board Diagnostics and Inspection and Maintenance in California

1995-08-01
951944
California is considering adopting an enhanced Inspection and Maintenance (I&M) program (commonly referred to as Smog Check II) beginning with the 1996 calendar year. This program will utilize a targeting scheme to identify vehicles likely to be high emitters and send these vehicles to centralized testing facilities. The remaining fleet of vehicles will be sent to decentralized testing facilities. At these facilities, vehicles will be subjected to steady state loaded mode dynamometer based tests. Simultaneously, all 1996 and later model year passenger cars, light- and medium-duty trucks sold in California will be equipped with an On-Board Diagnostic (OBDII) system. This system is designed to monitor critical emission related components and activate a Malfunction Indicator Light (MIL) when a failure or a drift in calibration is likely to cause emissions to exceed 1.5 times the vehicle certification standards.
Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Technical Paper

Aerodynamic Drag Reduction of a Racing Motorcycle Through Vortex Generation

2003-09-16
2003-32-0037
For any high performance vehicle the aerodynamic properties are significant when attempting to optimize performance. For ground vehicles the major aerodynamic forces are drag and down-force. The focus of this research was to determine the feasibility of vortex generation as a method to reduce the aerodynamic drag of a racing class motorcycle. Wind tunnel tests were performed on a full-scale racing motorcycle in the Closed Loop Tunnel (CLT) at West Virginia University (WVU) and in Old Dominion University's (ODU) Langley Full Scale Tunnel (LFST) at various airspeeds. Counter-rotating vortices were generated using small commercially available vortex generators (VGs). The largest reduction in drag was 10%, which was measured in the WVU CLT. The LFST tests showed no measurable increase or decrease in drag. This led to the conclusion that the airspeed and test section blockage ratio influenced the optimum configuration and size of the vortex generators.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Application of Two Fuel Cells in Hybrid Electric Vehicles

2008-10-06
2008-01-2418
Fuel economy is an important issue in urban driving cycle where vehicles are required to operate most of the time at lower power than the average demand. High power fuel cells operate economically at higher loads. Hence, conventional combination of a high power fuel cell and an additional storage device such as ultracapacitor or battery units does not necessarily provide an economic configuration. This paper offers a new configuration that consists of two fuel cells combined with a battery unit to provide a fuel efficient source of power for hybrid electric fuel cell vehicles in urban driving applications. The control algorithm and power management strategy for a combination of two downsized fuel cells and a storage device is provided and its performance of operation is compared with traditional topologies.
Technical Paper

CAD/CFD/CAE Modelling of Wankel Engines for UAV

2015-09-15
2015-01-2466
The Wankel engine for Unmanned Aerial Vehicle (UAV) applications delivers advantages vs. piston engines of simplicity, smoothness, compactness and high power-to-weight ratio. The use of computational fluid dynamic (CFD) and computer aided engineering (CAE) tools may permit to address the major downfalls of these engines, namely the slow and incomplete combustion due to the low temperatures and the rotating combustion chambers. The paper proposes the results of CAD/CFD/CAE modelling of a Wankel engine featuring tangential jet ignition to produce faster and more complete combustion.
Technical Paper

CFD Simulation of Metal and Optical Configuration of a Heavy-Duty CI Engine Converted to SI Natural Gas. Part 1: Combustion Behavior

2019-01-15
2019-01-0002
Internal combustion engines with optical access (a.k.a. optical engines) provide additional information in the quest for understanding the fundamental in-cylinder combustion phenomena. However, most optical engines have flat bowl-in-piston combustion chamber to optimize the visualization process, which is different, for example, from the traditional re-entrant bowl in compression ignition engines. A conventional heavy-duty direct-injection compression ignition engine was converted to spark ignition operation by replacing the fuel injector with a spark plug in both optical and metal setups to investigate the effect of the bowl geometry on flame propagation. Experimental data from steady-state lean-burn conditions was used to develop and validate a 3D CFD model of the engine. Numerical simulation results show that flame propagation in the radial direction was similar for both combustion chambers despite their different geometries.
Technical Paper

CFD Simulation of Metal and Optical Configuration of a Heavy-Duty CI Engine Converted to SI Natural Gas. Part 2: In-Cylinder Flow and Emissions

2019-01-15
2019-01-0003
Internal combustion diesel engines with optical access (a.k.a. optical engines) increase the fundamental understanding of combustion phenomena. However, optical access requirements result in most optical engines having a different in-cylinder geometry compared with the conventional diesel engine, such as a flat bowl-in-piston combustion chamber. This study investigated the effect of the bowl geometry on the flow motion and emissions inside a conventional heavy-duty direct-injection diesel engine that can operate in both metal and optical-access configurations. This engine was converted to natural-gas spark-ignition operation by replacing the fuel injector with a spark plug and adding a low-pressure gas injector in the intake manifold for fuel delivery, then operated at steady-state lean-burn conditions. A 3D CFD model based on the experimental data predicted that the different bowl geometry did not significantly affect in-cylinder emissions distribution.
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1998-08-11
981951
Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

Characterization of Cycle-by-Cycle Variations of an Optically Accessible Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition

2021-09-05
2021-24-0045
The combustion process in spark-ignition engines can vary considerably cycle by cycle, which may result in unstable engine operation. The phenomena amplify in natural gas (NG) spark-ignition (SI) engines due to the lower NG laminar flame speed compared to gasoline, and more so under lean burn conditions. The main goal of this study was to investigate the main sources and the characteristics of the cycle-by-cycle variation in heavy-duty compression ignition (CI) engines converted to NG SI operation. The experiments were conducted in a single-cylinder optically-accessible CI engine with a flat bowl-in piston that was converted to NG SI. The engine was operated at medium load under lean operating conditions, using pure methane as a natural gas surrogate. The CI to SI conversion was made through the addition of a low-pressure NG injector in the intake manifold and of a NG spark plug in place of the diesel injector.
Technical Paper

Chassis Dynamometer Emission Measurements from Refuse Trucks Using Dual-Fuel™ Natural Gas Engines

2003-11-10
2003-01-3366
Emissions from 10 refuse trucks equipped with Caterpillar C-10 engines were measured on West Virginia University's (WVU) Transportable Emissions Laboratory in Riverside, California. The engines all used a commercially available Dual-Fuel™ natural gas (DFNG) system supplied by Clean Air Partners Inc. (CAP), and some were also equipped with catalyzed particulate filters (CPFs), also from CAP. The DFNG system introduces natural gas with the intake air and then ignites the gas with a small injection of diesel fuel directly into the cylinder to initiate combustion. Emissions were measured over a modified version of a test cycle (the William H. Martin cycle) previously developed by WVU. The cycle attempts to duplicate a typical curbside refuse collection truck and includes three modes: highway-to-landfill delivery, curbside collection, and compaction. Emissions were compared to similar trucks that used Caterpillar C-10 diesels equipped with Engelhard's DPX catalyzed particulate filters.
Technical Paper

Comparison of the Exhaust Emissions from California Phase 1 (without oxygenates) and Phase 2 (with oxygenates) Fuel:A Case Study of 11 Passenger Vehicles

1996-05-01
961221
While most studies addressing the fuel effects are based on the Federal Test Procedure (FTP), there are limited studies investigating the fuel effects outside FTP test conditions. In this study, we investigated the differences in exhaust emissions from California Phase 1 to Phase 2 reformulated gasoline over a wide range of speed and ambient temperatures. Eleven catalyst equipped passenger vehicles were tested. The vehicles were comprised of three fuel delivery system configurations, namely, three from carburetor (CARBU), three from throttle body injection (TBI), and five from multi-port fuel injection (MPFI) group. Each vehicle was given 60 tests with the combination of two reformulated fuels: Phase 1 (without oxygenates) and Phase 2 (with oxygenates), three temperatures (50, 75, and 100 °F), and ten speed cycles (average speed ranges from 4 mph to 65 mph).
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Contribution of Soot Contaminated Oils to Wear

1998-05-04
981406
Among the key technologies currently being used for reducing emissions of oxides of nitrogen, Exhaust Gas Recirculation (EGR) has been found to be very effective for light duty diesel engines. However, EGR results in a sharp increase in particulate matter emissions in heavy-duty diesel engines. The presence of increased levels of particulate matter in the engine has led to increased wear of engine parts such as cylinder liners, piston rings, valve train system and bearings. A statistically designed experiment was developed to examine the effects of soot contaminated engine oil on wear of engine components. A three-body wear machine was designed and developed to simulate and estimate the extent of wear. The three oil properties studied were phosphorous level, dispersant level and sulfonate substrate level. The above three variables were formulated at two levels: High (1) and Low (-1). This resulted in a 23 matrix (8 oil blends).
Technical Paper

Design, Construction, and Operation of a Pneumatic Test Launch Apparatus for sUAS Prototypes

2015-09-15
2015-01-2454
The design and testing of small unmanned aerial vehicle (sUAV) prototypes can provide numerous difficulties when compared to the same process applied to larger aircraft. In most cases, it is desirable to have a better understanding of the low Reynolds number aerodynamics and stability characteristics prior to completion of the final sUAV design. This paper describes the design, construction, and operational performance of a pneumatic launch apparatus that has been used at West Virginia University (WVU) for the development and early flight testing of transforming sUAV platforms. Although other launch platforms exist that can provide the safe launch of such prototypes, the particular launch apparatus constructed at WVU exhibits unmatched launch efficiency, and is far less expensive to operate per shot than any other launch system available.
X