Refine Your Search

Topic

Search Results

Technical Paper

An Ultra-Light Heuristic Algorithm for Autonomous Optimal Eco-Driving

2023-04-11
2023-01-0679
Connected autonomy brings with it the means of significantly increasing vehicle Energy Economy (EE) through optimal Eco-Driving control. Much research has been conducted in the area of autonomous Eco-Driving control via various methods. Generally, proposed algorithms fall into the broad categories of rules-based controls, optimal controls, and meta-heuristics. Proposed algorithms also vary in cost function type with the 2-norm of acceleration being common. In a previous study the authors classified and implemented commonly represented methods from the literature using real-world data. Results from the study showed a tradeoff between EE improvement and run-time and that the best overall performers were meta-heuristics. Results also showed that cost functions sensitive to the 1-norm of acceleration led to better performance than those which directly minimize the 2-norm.
Journal Article

Analysis of LiDAR and Camera Data in Real-World Weather Conditions for Autonomous Vehicle Operations

2020-04-14
2020-01-0093
Autonomous vehicle technology has the potential to improve the safety, efficiency, and cost of our current transportation system by removing human error. With sensors available today, it is possible for the development of these vehicles, however, there are still issues with autonomous vehicle operations in adverse weather conditions (e.g. snow-covered roads, heavy rain, fog, etc.) due to the degradation of sensor data quality and insufficiently robust software algorithms. Since autonomous vehicles rely entirely on sensor data to perceive their surrounding environment, this becomes a significant issue in the performance of the autonomous system. The purpose of this study is to collect sensor data under various weather conditions to understand the effects of weather on sensor data. The sensors used in this study were one camera and one LiDAR. These sensors were connected to an NVIDIA Drive Px2 which operated in a 2019 Kia Niro.
Technical Paper

Assessing Resilience in Lane Detection Methods: Infrastructure-Based Sensors and Traditional Approaches for Autonomous Vehicles

2024-04-09
2024-01-2039
Traditional autonomous vehicle perception subsystems that use onboard sensors have the drawbacks of high computational load and data duplication. Infrastructure-based sensors, which can provide high quality information without the computational burden and data duplication, are an alternative to traditional autonomous vehicle perception subsystems. However, these technologies are still in the early stages of development and have not been extensively evaluated for lane detection system performance. Therefore, there is a lack of quantitative data on their performance relative to traditional perception methods, especially during hazardous scenarios, such as lane line occlusion, sensor failure, and environmental obstructions.
Technical Paper

Autonomous Eco-Driving Evaluation of an Electric Vehicle on a Chassis Dynamometer

2023-04-11
2023-01-0715
Connected and Automated Vehicles (CAV) provide new prospects for energy-efficient driving due to their improved information accessibility, enhanced processing capacity, and precise control. The idea of the Eco-Driving (ED) control problem is to perform energy-efficient speed planning for a connected and automated vehicle using data obtained from high-resolution maps and Vehicle-to-Everything (V2X) communication. With the recent goal of commercialization of autonomous vehicle technology, more research has been done to the investigation of autonomous eco-driving control. Previous research for autonomous eco-driving control has shown that energy efficiency improvements can be achieved by using optimization techniques. Most of these studies are conducted through simulations, but many more physical vehicle integrated test application studies are needed.
Technical Paper

Comparison of Optimal Energy Management Strategies Using Dynamic Programming, Model Predictive Control, and Constant Velocity Prediction

2020-10-05
2020-01-5071
Due to the recent advancements in autonomous vehicle technology, future vehicle velocity predictions are becoming more robust, which allows fuel economy (FE) improvements in hybrid electric vehicles (HEVs) through optimal energy management strategies (EMS). Velocity predictions generated between 5 and 30 s predictions could be implemented using model predictive control (MPC), but the performance of MPC must be well understood. Also, the vulnerability of predictive optimal EMS to velocity prediction accuracy should be addressed. Before an optimal EMS can be implemented, its overall performance must be evaluated and benchmarked against relevant velocity prediction metrics. A real-world highway drive cycle (DC) in the high-fidelity, controls-oriented 2017 Toyota Prius Prime model operating in charge-sustaining mode was utilized to observe FE realization.
Technical Paper

Detection of Hybrid and Quiet Vehicles by Blind and Visually Impaired Pedestrians

2011-05-17
2011-01-1725
The increased popularity of hybrid electric vehicles has created a growing concern for the safety of blind and visually impaired pedestrians. Accident data published by the National Highway Traffic Safety Administration demonstrates a higher incident rate among hybrid electrics vehicles compared to internal combustion engine vehicles during slow speed movement, like when coming to a stop and leaving/entering a parking spot. The typical lower sound output of hybrid electric vehicles, compared to internal combustion engine vehicles, has been reported as the reason for higher incident rates. Previous studies have focused on the overall sound pressure level of vehicles and the ability for blind pedestrians to detect their approach.
Technical Paper

Development of Stall Margin Instrumentation Designed for use in Icing Conditions

2003-06-16
2003-01-2114
This paper presents further development of stall margin instrumentation designed for use in icing conditions. Initial work developing this instrumentation was conducted on a NACA 0018 wing model in Western Michigan University's wind tunnel.1 The results from this work showed promise and work continued on a NACA 23012 wing. The work on the NACA 23012 wing is presented here. The stall margin instrumentation system maintains accuracy independent of wing leading edge ice formations. The stall margin system uses four surface pressures, measured aft of the ice formation, from which the aircraft's normalized lift coefficient is determined. The pressure port locations are selected such that the calibration algorithm remains nearly constant as the leading edge ice shape and thickness change. This allows the normalized lift coefficient to be known for iced and non-iced conditions.
Technical Paper

Engineering Requirements that Address Real World Hazards from Using High-Definition Maps, GNSS, and Weather Sensors in Autonomous Vehicles

2024-04-09
2024-01-2044
Evaluating real-world hazards associated with perception subsystems is critical in enhancing the performance of autonomous vehicles. The reliability of autonomous vehicles perception subsystems are paramount for safe and efficient operation. While current studies employ different metrics to evaluate perception subsystem failures in autonomous vehicles, there still exists a gap in the development and emphasis on engineering requirements. To address this gap, this study proposes the establishment of engineering requirements that specifically target real-world hazards and resilience factors important to AV operation, using High-Definition Maps, Global Navigation Satellite System, and weather sensors. The findings include the need for engineering requirements to establish clear criteria for a high-definition maps functionality in the presence of erroneous perception subsystem inputs which enhances the overall safety and reliability of the autonomous vehicles.
Technical Paper

Evaluation of Cylinder Bore and Cylinder Head Deformations Using Holographic Interferometry

1991-02-01
910433
In the design of automotive and heavy equipment engines, accurate analysis of factors which influence immediate and long-term effects is essential. Fastener torque, thermal and pressure variations are utilized to evaluate basic sensitivity of the engine to these parameters by measurement of cylinder bore and cylinder head distortions. Holographic interferometry was used to measure the cylinder deformation caused by the applied thermal and mechanical loads. A cast iron V-6 engine was used as the test engine. Influences of bolt torquing, as would occur during initial assembly and/or service were evaluated. Pressure on the cylinder walls was simulated by creating a vacuum in the water jackets of the engine block. The effects of thermal loads were evaluated using a temperature controlled liquid flowing through the water jackets. Incremental steady-state loads were applied to investigate the deformation of the engine at specific points in the operating cycle.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Technical Paper

Higher Accuracy and Lower Computational Perception Environment Based Upon a Real-time Dynamic Region of Interest

2022-03-29
2022-01-0078
Robust sensor fusion is a key technology for enabling the safe operation of automated vehicles. Sensor fusion typically utilizes inputs of cameras, radars, lidar, inertial measurement unit, and global navigation satellite systems, process them, and then output object detection or positioning data. This paper will focus on sensor fusion between the camera, radar, and vehicle wheel speed sensors which is a critical need for near-term realization of sensor fusion benefits. The camera is an off-the-shelf computer vision product from MobilEye and the radar is a Delphi/Aptive electronically scanning radar (ESR) both of which are connected to a drive-by-wire capable vehicle platform. We utilize the MobilEye and wheel speed sensors to create a dynamic region of interest (DROI) of the drivable region that changes as the vehicle moves through the environment.
Technical Paper

Model in the Loop Control Strategy Evaluation Procedure for an Autonomous Parking Lot Sweeper

2022-03-29
2022-01-0086
A path tracking controller is essential for an autonomous vehicle to navigate a complex environment while avoiding obstacles. Many research studies have proposed new controller designs and strategies. However, it is often unclear which control strategy is the most suitable for a specific Autonomous / ADAS user application. This study proposes a benchmark workflow by comparing different control observer models and their control strategies integration for an autonomous parking lot sweeper in a complex and dense environment at low-speed utilizing model-in-the-loop simulation. The systematic procedure consists of the following steps: (1) vehicle observer model validation (2) control strategy development (3) model-in-the-loop simulation benchmark for specific user scenarios. The kinematic and dynamic vehicle models were used to validate the truck’s behavior using physical data.
Technical Paper

No Cost Autonomous Vehicle Advancements in CARLA through ROS

2021-04-06
2021-01-0106
Development of autonomous vehicle technology is expensive and perhaps more complicated than initially thought, as evidenced by the recent rollback of anticipated delivery dates from companies such as Tesla, Waymo, GM, and more. One of the most effective techniques to reduce research and development costs and speed up implementation is rigorous analysis through simulation. In this paper, we present multiple autonomous vehicle perception and control strategies that are rigorously investigated in the user friendly, free, and open-source simulation environment, CARLA. Overall, we successfully formulated potential solutions to the autonomous navigation problem and assessed their advantages and disadvantages in simulation at no cost. First, a lane finding method utilizing polynomial fitting and machine learning is proposed. Then, the waypoint navigation strategy is described, along with route planning. Object detection is then implemented using pre-trained convolutional neural networks.
Technical Paper

Observer for Faulty Perception Correction in Autonomous Vehicles

2020-04-14
2020-01-0694
Operation of an autonomous vehicle (AV) carries risk if it acts on inaccurate information about itself or the environment. The perception system is responsible for interpreting the world and providing the results to the path planning and other decision systems. The perception system performance is a result of the operating state of the sensors, e.g. is a sensor in fault or being adversely affected by the weather or environmental conditions, and approach to sensor measurement interpretation. We propose a trailing horizon switched system observer that minimizes the difference between reference tracking values developed from sensor fusion performed at an upper level and the values from a potentially faulty sensor based upon the convex combination of different sensor observation model outputs; the sensor observations models are associated with different sensor operating errors.
Technical Paper

Performance Evaluation of an Autonomous Vehicle Using Resilience Engineering

2022-03-29
2022-01-0067
Standard operation of autonomous vehicles on public roads results in significant exposure to high levels of risk. There is a significant need to develop metrics that evaluate safety of an automated system without reliance on the rate of vehicle accidents and fatalities compared to the number of miles driven; a proactive rather than a reactive metric is needed. Resilience engineering is a new paradigm for safety management that focuses on evaluating complex systems and their interaction with the environment. This paper presents the overall methodology of resilience engineering and the resilience assessment grid (RAG) as an evaluation tool to measure autonomous systems' resilience. This assessment tool was used to evaluate the ability to respond to the system. A Pure Pursuit controller was developed and utilized as the path tracking control algorithm, and the Carla simulator was used to implement the algorithm and develop the testing environment for this methodology.
Technical Paper

Performance of Virtual Torque Sensor for Heavy Duty Truck Applications

2022-03-29
2022-01-0625
Automotive companies are constantly looking to increase the fuel efficiency, shift quality, passenger comfort, and to reduce wear and tear on the components. Most of these aspects depend on the accuracy of torque used for transmission control, which determines the required operational gear position at a given speed and road conditions. Currently, SAE J-1939 CAN bus torque estimation relies on steady state maps that are generated during the calibration of the engine for different speeds and loads. In this paper we report the development of a Virtual Flywheel Torque Sensor (VFTS) useful for real time torque measurement based on an engine speed harmonics analysis. The VFTS uses a signal from the flywheel speed sensor to estimate the flywheel angular acceleration, which and provides a proportional torque value which corresponds to torque at the flywheel.
Technical Paper

Projecting Lane Lines from Proxy High-Definition Maps for Automated Vehicle Perception in Road Occlusion Scenarios

2023-04-11
2023-01-0051
Contemporary ADS and ADAS localization technology utilizes real-time perception sensors such as visible light cameras, radar sensors, and lidar sensors, greatly improving transportation safety in sufficiently clear environmental conditions. However, when lane lines are completely occluded, the reliability of on-board automated perception systems breaks down, and vehicle control must be returned to the human driver. This limits the operational design domain of automated vehicles significantly, as occlusion can be caused by shadows, leaves, or snow, which all occur in many regions. High-definition map data, which contains a high level of detail about road features, is an alternative source of the required lane line information. This study details a novel method where high-definition map data are processed to locate fully occluded lane lines, allowing for automated path planning in scenarios where it would otherwise be impossible.
Technical Paper

Quantitative Resilience Assessment of GPS, IMU, and LiDAR Sensor Fusion for Vehicle Localization Using Resilience Engineering Theory

2023-04-11
2023-01-0576
Practical applications of recently developed sensor fusion algorithms perform poorly in the real world due to a lack of proper evaluation during development. Existing evaluation metrics do not properly address a wide variety of testing scenarios. This issue can be addressed using proactive performance measurements such as the tools of resilience engineering theory rather than reactive performance measurements such as root mean square error. Resilience engineering is an established discipline for evaluating proactive performance on complex socio-technical systems which has been underutilized for automated vehicle development and evaluation. In this study, we use resilience engineering metrics to assess the performance of a sensor fusion algorithm for vehicle localization. A Kalman Filter is used to fuse GPS, IMU and LiDAR data for vehicle localization in the CARLA simulator.
Technical Paper

Real World Use Case Evaluation of Radar Retro-reflectors for Autonomous Vehicle Lane Detection Applications

2024-04-09
2024-01-2042
Lane detection plays a critical role in autonomous vehicles for safe and reliable navigation. Lane detection is traditionally accomplished using a camera sensor and computer vision processing. The downside of this traditional technique is that it can be computationally intensive when high quality images at a fast frame rate are used and has reliability issues from occlusion such as, glare, shadows, active road construction, and more. This study addresses these issues by exploring alternative methods for lane detection in specific scenarios caused from road construction-induced lane shift and sun glare. Specifically, a U-Net, a convolutional network used for image segmentation, camera-based lane detection method is compared with a radar-based approach using a new type of sensor previously unused in the autonomous vehicle space: radar retro-reflectors.
Journal Article

Real-Time Estimation of Perception Sensor Misalignment in Autonomous Vehicles

2023-04-11
2023-01-0059
Autonomous vehicles rely upon accurate information about their surrounding environment to perform safe operational planning. The environment sense and perception system normally produces camera image data and LiDAR point cloud data that are processed and then fused to obtain a better perception of the environment than is possible from either alone. The accuracy of the fused data depends upon knowledge of the position of each sensor on the ego vehicle. Vehicle damage, improper sensor installation, sensor mount deformation, mount movement excited by vehicle motion, and/or other situations can result in an unexpected position of the sensor. This error adds uncertainty into the sensor measurement fusion that is normally not accounted for. LiDAR translational offset and angular orientation misalignment errors are investigated for correction.
X