Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Numerical and Experimental Investigation on Different Strategies to Evaluate Heat Release Rate and Performance of a Passive Pre-Chamber Ignition System

2022-03-29
2022-01-0386
Pre-chamber ignition has demonstrated capability to increase internal combustion engine in-cylinder burn rates and enable the use of low engine-out pollutant emission combustion strategies. In the present study, newly designed passive pre-chambers with different nozzle-hole patterns - that featured combinations of radial and axial nozzles - were experimentally investigated in an optically accessible, single-cylinder research engine. The pre-chambers analyzed had a narrow throat geometry to increase the velocity of the ejected jets. In addition to a conventional inductive spark igniter, a nanosecond spark ignition system that promotes faster early burn rates was also investigated. Time-resolved visualization of ignition and combustion processes was accomplished through high-speed hydroxyl radical (OH*) chemiluminescence imaging. Pressure was measured during the engine cycle in both the main chamber and pre-chamber to monitor respective combustion progress.
Technical Paper

A Qualitative Evaluation of Mixture Formation in a Direct-Injection Hydrogen-Fuelled Engine

2007-04-16
2007-01-1467
In an optically-accessible single-cylinder engine fuelled with hydrogen, OH* chemiluminescence imaging and planar laser induced fluorescence (PLIF) are used to qualitatively evaluate in-cylinder mixture formation. The experiments include measurements for engine operation with hydrogen injection in-cylinder either prior to or after intake valve closure (IVC). Pre-IVC injection is used to produce a near homogeneous mixture in-cylinder to establish a baseline comparison for post-IVC injection. To assess the effects of injection pressure on mixture formation, two injection pressures are used for post-IVC injection. For post-IVC injection with start of injection (SOI) coincident with IVC, mixture distribution is similar to pre-IVC injection and there are little differences between the two injection pressures. With retard of SOI from IVC, mixture inhomogeneities increase monotonically for both injection pressures.
Technical Paper

A Robustness-Focused Shape Optimization Method for Intake Ports

2009-06-15
2009-01-1777
Merging a CAE shape optimization system and a concept Taguchi method SN-ratio index, a robustness-focused automated shape optimization method has been developed. Applying this method to diesel intake ports, with mold position tolerance set as the error factor, SN-ratio was defined for swirl stability. As a result of the optimization provided by a multi-objective genetic algorithm, simultaneous improvement of flux, swirl rotation and SN ratio was achieved.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

Acquisition of Corresponding Fuel Distribution and Emissions Measurements in HCCI Engines

2005-10-24
2005-01-3748
Optical engines are often skip-fired to maintain optical components at acceptable temperatures and to reduce window fouling. Although many different skip-fired sequences are possible, if exhaust emissions data are required, the skip-firing sequence ought to consist of a single fired cycle followed by a series of motored cycles (referred to here as singleton skip-firing). This paper compares a singleton skip-firing sequence with continuous firing at the same inlet conditions, and shows that combustion performance trends with equivalence ratio are similar. However, as expected, reactant temperatures are lower with skip-firing, resulting in retarded combustion phasing, and lower pressures and combustion efficiency. LIF practitioners often employ a homogeneous charge of known composition to create calibration images for converting raw signal to equivalence ratio.
Technical Paper

Adapting Dimensionless Numbers Developed for Knock Prediction Under Homogeneous Conditions to Ultra-Lean Spark Ignition Conditions

2023-09-29
2023-32-0008
Knock in spark-ignition (SI) engines has been a subject of many research efforts and its relationship with high efficiency operating conditions keeps it a contemporary issue as engine technologies push classical limits. Despite this long history of research, literature is lacking coherent and generalized descriptions of how knock is affected by changes in the full cylinder temperature field, residence time (engine speed), and air/fuel ratio. In this work, two dimensionless numbers are applied to fully 3D SI conditions. First, the characteristic time of autoignition (ignition delay) is compared against the characteristic time of end-gas deflagration, which was used to predict knocking propensity. Second, the temperature gradient of the end-gas is compared against a critical detonation-based temperature gradient, which predicts the knock intensity.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Journal Article

An Investigation into the Effects of Fuel Properties and Engine Load on UHC and CO Emissions from a Light-Duty Optical Diesel Engine Operating in a Partially Premixed Combustion Regime

2010-05-05
2010-01-1470
The behavior of the engine-out UHC and CO emissions from a light-duty diesel optical engine operating at two PPCI conditions was investigated for fifteen different fuels, including diesel fuels, biofuel blends, n-heptane-iso-octane mixtures, and n-cetane-HMN mixtures. The two highly dilute (9-10% O₂) early direct injection PPCI conditions included a low speed (1500 RPM) and load (3.0 bar IMEP) case~where the UHC and CO have been found to stem from overly-lean fuel-air mixtures~and a condition with a relatively higher speed (2000 RPM) and load (6.0 bar IMEP)~where globally richer mixtures may lead to different sources of UHC and CO. The main objectives of this work were to explore the general behavior of the UHC and CO emissions from early-injection PPCI combustion and to gain an understanding of how fuel properties and engine load affect the engine-out emissions.
Journal Article

An Optical Study of Mixture Preparation in a Hydrogen-fueled Engine with Direct Injection Using Different Nozzle Designs

2009-11-02
2009-01-2682
Mixture formation in an optically accessible hydrogen-fueled engine was investigated using Planar Laser-Induced Fluorescence (PLIF) of acetone as a fuel tracer. The engine was motored and fueled by direct high-pressure injection. This paper presents the evolution of the spatial distribution of the ensemble-mean equivalence ratio for six different combinations of nozzle design and injector geometry, each for three different injection timings after intake-valve closure. Asymmetric single-hole and 5-hole nozzles as well as symmetric 6-hole and 13-hole nozzles were used. For early injection, the low in-cylinder pressure and density allow the jet to preserve its momentum long enough to undergo extensive jet-wall and (for multi-hole nozzles) jet-jet interaction, but the final mixture is fairly homogeneous. Intermediately timed injection yields inhomogeneous mixtures with surprisingly similar features observed for all multi-hole injectors.
Technical Paper

Analysis of Degradation Mechanism of Lead-Free Materials

2009-04-20
2009-01-0260
The use of lead-free (Pb-free) solder and plating in onboard electronic components has accelerated rapidly in recent years, but solutions have yet to be found for the issues of whisker generation in tin (Sn) plating and crack initiation in Pb-free solder, despite widespread research efforts. Analysis of the whisker generation mechanism has focused on internal energy levels and crystal orientation, and analysis of the crack initiation mechanism in Pb-free solder has examined changes in the grain boundaries of Sn crystals.
Journal Article

Analysis of Influence of Snow Melting Agents and Soil Components on Corrosion of Decorative Chrome Plating

2016-04-05
2016-01-0539
The dissolution and exfoliation of chromium plating specific to Russia was studied. Investigation and analysis of organic compounds in Russian soil revealed contents of highly concentrated fulvic acid. Additionally, it was found that fulvic acid, together with CaCl2 (a deicing agent), causes chromium plating corrosion. The fulvic acid generates a compound that prevents reformation of a passivation film and deteriorates the sacrificial corrosion effectiveness of nickel.
Journal Article

Analysis of Piston Friction in Internal Combustion Engine

2013-10-14
2013-01-2515
The purpose of this study is to analyze the piston skirt friction reduction effect of a diamond-like carbon (DLC)-coated wrist pin. The floating liner method and elasto-hydrodynamic lubrication (EHL) simulation were used to analyze piston skirt friction. The experimental results showed that a DLC-coated wrist pin reduced cylinder liner friction, and that this reduction was particularly large at low engine speeds and large pin offset conditions. Friction was particularly reduced at around the top and bottom dead center positions (TDC and BDC). EHL simulation confirmed that a DLC-coated wrist pin affects the piston motion and reduces the contact pressure between the piston skirt and cylinder liner.
Technical Paper

Analysis of Potassium Storage Components in NOx Catalysts Application of Analytical Techniques and DFT Computations to Catalytic Analysis

2004-03-08
2004-01-1494
By using analytical techniques (FT-IR, TG-MS, ICP) and DFT calculations, the potassium (K) used as a storage component in NOx Catalysts can be analyzed. The results from this study show that the, K exists as K2CO3, and that the amount, molecular structure, and thermal stability of K2CO3 are different, depending on the support material (ZrO2, Al2O3, or TiO2). If the amount of K that interacts with the support to form an inactive complex oxide is decreased, the amount of K2CO3 and NOx storage is increased. The amount of the inactive K varies with the basicity of the supports. K2CO3 that exists in unstable structures on the supports can be easy to react with NOx to form the nitrate. So, the higher the quantity of unstable K2CO3, the higher the NOx storage capacity. Based on these results, a development guideline was proposed to improve the NOx storage performance.
Technical Paper

Analysis on Behaviors of Swirl Nozzle Spray and Slit Nozzle Spray in Relation to DI Gasoline Combustion

2003-03-03
2003-01-0058
Behavior of sprays formed by slit nozzle as well as swirl nozzles with the spray cone angle in the range of 40° ∼110 ° were studied in a constant volume N2 gas chamber. The fuels used are iso-pentane, n-heptane, benzene and gasoline. The ambient pressure and temperature were raised up to 1.0 MPa and 465 K, respectively. The injection pressure was mainly set at 8 MPa. Spray penetrates at an almost constant speed for a while after injection start and begins to decelerate at a certain point. This point was judged as breakup point, based on a momentum theory on spray motion, the observation of spray inside and the analysis of the spray front reacceleration which occurs under highly volatile condition.
Technical Paper

Application of a New Turbulent Flame Speed Combustion Model on Burn Rate Simulation of Spark Ignition Engines

2016-04-05
2016-01-0588
This work presents turbulent premixed combustion modeling in spark ignition engines using G-equation based turbulent combustion model. In present study, a turbulent flame speed expression proposed and validated in recent years by two co-authors of this paper is applied to the combustion simulation of spark ignition engines. This turbulent flame speed expression has no adjustable parameters and its constants are closely tied to the physics of scalar mixing at small scales. Based on this flame speed expression, a minor modification is introduced in this paper considering the fact that the turbulent flame speed changes to laminar flame speed if there is no turbulence. This modified turbulent flame speed expression is implemented into Ford in-house CFD code MESIM (multi-dimensional engine simulation), and is validated extensively.
Journal Article

Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline

2010-04-12
2010-01-1086
The potential of boosted HCCI for achieving high loads has been investigated for intake pressures (Piⁿ) from 100 kPa (naturally aspirated) to 325 kPa absolute. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) equipped with a compression-ratio 14 piston at 1200 rpm. The intake charge was fully premixed well upstream of the intake, and the fuel was a research-grade (R+M)/2 = 87-octane gasoline with a composition typical of commercial gasolines. Beginning with Piⁿ = 100 kPa, the intake pressure was systematically increased in steps of 20 - 40 kPa, and for each Piⁿ, the fueling was incrementally increased up to the knock/stability limit, beyond which slight changes in combustion conditions can lead to strong knocking or misfire. A combination of reduced intake temperature and cooled EGR was used to compensate for the pressure-induced enhancement of autoignition and to provide sufficient combustion-phasing retard to control knock.
Technical Paper

CFD-Based Assessment of the Effect of End-Gas Temperature Stratification on Acoustic Knock Generation in an Ultra-Lean Burn Spark Ignition Engine

2023-04-11
2023-01-0250
End-gas temperature stratification has long been studied with respect to its effect on stoichiometric spark-ignition (SI) engine knock. The role of temperature stratification for homogeneous-charge compression ignition (HCCI) engine operation is also reasonably well understood. However, the role of temperature stratification in ultra-lean SI engines has had less coverage. Literature is lacking well-controlled studies of how knock is affected by changes in the full cylinder temperature fields, especially since cycle-to-cycle variability can impede a determination of cause and effect. In this work, the knocking propensity of specific cylinder conditions is investigated via 3D computational fluid dynamics (CFD) simulations utilizing a large eddy simulation (LES) framework.
Technical Paper

Cabin Comfort Improvement and Heating Energy Reduction under Cold-Condition by Using Radiative Heater

2022-03-29
2022-01-0202
Since the regulations of CO2 emissions have been tightened in each country recently, each automotive manufacturer has responded by bringing competitive technologies that maximize efficiency while promoting vehicle electrification such as xEV. Not only the efficiency, we need to meet or exceed occupant performance and comfort expectations. The climate control system expends a large amount of energy to keep a comfortable environment, having a significant impact on fuel consumption and EV driving range. Therefore, many manufacturers try to save energy and improve occupant comfort quickly by using not only the conventional convective heating by HVAC but also the conductive heating to heat the human body directly such as seat and steering wheel heater. In this study, a radiative heater, which is more efficient than a convective heating to warm anterior thigh and shin where a conductive heating cannot warm, was applied to vehicle.
Journal Article

Calibration and Validation of a Diesel Oxidation Catalyst Model: from Synthetic Gas Testing to Driving Cycle Applications

2011-04-12
2011-01-1244
To meet future stringent emission regulations such as Euro6, the design and control of diesel exhaust after-treatment systems will become more complex in order to ensure their optimum operation over time. Moreover, because of the strong pressure for CO₂ emissions reduction, the average exhaust temperature is expected to decrease, posing significant challenges on exhaust after-treatment. Diesel Oxidation Catalysts (DOCs) are already widely used to reduce CO and hydrocarbons (HC) from diesel engine emissions. In addition, DOC is also used to control the NO₂/NOx ratio and to generate the exothermic reactions necessary for the thermal regeneration of Diesel Particulate Filter (DPF) and NOx Storage and Reduction catalysts (NSR). The expected temperature decrease of diesel exhaust will adversely affect the CO and unburned hydrocarbons (UHC) conversion efficiency of the catalysts. Therefore, the development cost for the design and control of new DOCs is increasing.
X