Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Fowler Flap System for a High-Performance General Aviation Airfoil

1974-02-01
740365
As part of a general aviation airfoil development program being carried out under the direction of the NASA Langley Research Center, a 30% chord Fowler flap has been developed for the GA(W)-1 airfoil.. Wind tunnel tests at Wichita State University have demonstrated a c1max value of 3.80 for 40 deg flap deflection at a Reynolds number of 2.2 × 106. Effects of flap slot geometry have been systematically tested and optimum flap settings for any flight c1 have been obtained. Modification of the reflexed lower surface contour resulted in a reduced c1max with flap nested. Vortex generators provided an increase in c1max of 0.2 for flap nested and 40 deg flap along with a drag penalty at low c1 values. Flow visualization studies show that the stalling patterns for the new airfoil are characterized by an absence of leading edge separation for both the flap-nested and the 40 deg flap cases.
Technical Paper

An Experimental Investigation of SLD Impingement on Airfoils and Simulated Ice Shapes

2003-06-16
2003-01-2129
This paper presents experimental methods for investigating large droplet impingement dynamics and for obtaining small and large water droplet impingement data. Droplet impingement visualization experiments conducted in the Goodrich Icing Wind Tunnel with a 21-in chord NACA 0012 airfoil demonstrated considerable droplet splashing during impingement. The tests were performed for speeds in the range 50 to 175 mph and with cloud median volumetric diameters in the range of 11 to 270 microns. Extensive large droplet impingement tests were conducted at the NASA Glenn Icing Research Tunnel (IRT). Impingement data were obtained for a range of airfoil sections including three 36-inch chord airfoils (MS(1)-0317, GLC-305, and NACA 652-415), a 57-inch chord Twin Otter horizontal tail section and 22.5-minute and 45-minute LEWICE glaze ice shapes for the Twin Otter tail section. Small droplet impingement tests were also conducted for selected test models.
Technical Paper

Damage Resistance Characterization of Sandwich Composites Using Response Surfaces

2002-04-16
2002-01-1538
The coupled influence of material configuration (number of facesheet plies, core density, core thickness) and impact parameters (impact velocity and energy, impactor diameter) on the impact damage resistance characteristics of sandwich composites comprised of carbon-epoxy woven fabric facesheets and Nomex honeycomb cores was investigated using empirically based quadratic response surfaces. The diameter of the planar damage area associated with TTU C-scan measurements and the peak residual facesheet indentation depth were used to describe the extent of internal and detectable surface damage, respectively. Estimates of the size of the planar damage region correlated reasonably well with experimentally determined values. For a fixed set of impact parameters, estimates of the planar damage size and residual facesheet indentation suggest that impact damage development is highly material and lay-up configuration dependent.
Technical Paper

Damage Tolerance of Honeycomb Sandwich Composite Panels

2002-04-16
2002-01-1537
During this study, a number of 8.5-inch by 11.5-inch flat honeycomb sandwich panels were inflicted with low energy impact damage, inspected non-destructively, and tested for residual in-plane compressive strength. Each panel had either a 3/8-inch or 3/4-inch low density Nomex honeycomb core, and either 2-ply, 4-ply or 6-ply face sheets. The face sheets were either carbon or Eglass (prepreg) fabric. The panels were either clamped or simply supported in a test fixture during impact from a gravity assisted drop mechanism, and impacted with either a 1-inch or 3-inch diameter spherical indenter. After impact the damage to each panel was characterized by (1) ultrasonic through-transmission to obtain a c-scan representing planar damage area, (2) indentation volume and depth, and finally (3) visual inspection to rate the damage according to a predetermined rating scale. The panels were then tested for in-plane compressive strength.
Technical Paper

Development of a Low Cost Cascade Aerodynamics Test Facility Using a Simple Flow Visualization Velocimetry Technique

2002-04-16
2002-01-1543
A unique cascade test facility has been developed for use in the Wichita State University (WSU) water table. Although small in scale, the WSU water table has the advantage of low cost and the ease with which test conditions can be varied. Water table facilities have been used in the past for cascade experiments, especially as analogies for compressible flow visualization of turbine cascades. However, the lack of a quantitative measurement technique at low speeds has precluded the use of the water table as an analogy for testing subsonic compressors and turbines. In the present experiment, the hydrogen bubble flow visualization technique is used to generate bubble time lines, and a CCD (Charge Coupled Device) video camera system captures and digitizes these time line images. A VisualBASIC® computer program is then used to determine the wake velocity profile based on the difference in bubble line positions at successive intervals of time.
Technical Paper

Experimental Investigation of a Bleed Air Ice Protection System

2007-09-24
2007-01-3313
The work presented in this paper is part of a long-term research program to explore methods for improving bleed air system performance. Another objective of this research is to provide detailed experimental data for the development and validation of simulation tools used in the design and analysis of bleed air systems. A business jet wing was equipped with an inner-liner hot air ice protection system and was extensively instrumented for documenting system thermal performance. The wing was tested at the NASA Glenn Icing Research Tunnel (IRT) for representative in-flight icing conditions. Data obtained include bleed air supply and exhaust flow properties, wing leading edge skin temperatures, temperatures and pressures in the interior passages of the bleed air system, flow properties inside the piccolo tube, photos of run back ice shapes and ice shape traces. Selected experimental results for a warm hold icing condition are presented in this paper.
Technical Paper

Finite Element Modeling Strategies for Dynamic Aircraft Seats

2008-08-19
2008-01-2272
Dynamic aircraft seat regulations are identified in the Code of Federal Regulations (CFR), 14 CFR Parts § 23.562 [1] and § 25.562 [2] for crashworthy evaluation of a seat in dynamic environment. The regulations specify full-scale dynamic testing on production seats. The dynamic tests are designed to demonstrate the structural integrity of the seat to withstand an emergency landing event and occupant safety. SAE standard AS 8049 [3] supports detailed information on dynamic seat testing procedure and acceptance criteria. Full-scale dynamic testing in support of certification is expensive and repeated testing due to failure drastically increases the expense. Involvement of impact environment, flexibility in interior configuration and complicated nature of seat engineering design makes this problem quite complex, so that classical hand calculations are practically impossible.
Technical Paper

Further Results of Natural Laminar Flow Flight Test Experiments

1985-04-01
850862
Flight test experiments were conducted to measure the extent and nature of natural laminar flow on a smoothed test region of a swept-wing business jet wing. Surface hot film aneraometry and sublimating chemicals were used for transition detection. Surface pressure distributions were measured using pressure belts. Engine noise was monitored by a microphone attached to the wing surface to study possible acoustic effects on stability of the laminar boundary layer, Side-slip conditions were flown to simulate changes in effective wing sweep. Flight instrumentation and ground data analysis techniques and a method for measuring intermittency of turbulence are described, Correlation was obtained between the hot film gage signals and chemicals for transition detection. Cross-flow vortices were observed for some flight conditions. Results of spectral and statistical analysis of the hot film signals for various flight test conditions are presented.
Technical Paper

Methodology for Icing Tanker Spray Rig Design and Evaluation

2007-09-24
2007-01-3334
A methodology for developing spray rigs for icing cloud simulation is presented. This methodology includes Computational Fluid Dynamics (CFD) analysis and icing tunnel experiments and was applied to design a spray rig system for a small airborne icing tanker. An in-house spray system was developed and tested in a laboratory to assess two commercially available nozzles - a single-jet type and a multi-jet type - which were capable of producing both FAR Part 25 Appendix C and SLD icing clouds. Spray rig characteristics evaluated during the laboratory tests included air and water flow rates as well as droplet size and distributions. The effects of airspeed and nozzle spacing on spray plume size and uniformity were investigated in a small icing tunnel facility with a two-nozzle spray rig. The experimental data were compared with three-dimensional numerical simulation results obtained with the FLUENT software.
Technical Paper

Parametric Experiment of Large Droplet Dynamics

2007-09-24
2007-01-3346
An experimental study was performed to investigate large droplet dynamics in the vicinity of an airfoil. The investigation was conducted using the NASA Glenn Droplet Imaging Flow Tunnel (DrIFT). Mono-dispersed large droplets were released at the tunnel inlet and accelerated toward an airfoil that was mounted in the test section. The dynamic behavior of a droplet's encounter with the airfoil, which may involve droplet distortion, break-up, impingement and splashing, was recorded using a high-speed imaging system. The effects of the droplet size, tunnel velocity and airfoil configuration on the droplet dynamics were investigated in a parametric study. The droplet sizes used in the experimental study were 96 and 375 μm whereas tunnel velocities were varied from 80 to 130 mph. Three different airfoil geometries were used in the experimental study; a ‘clean’ and ‘iced’ airfoil, and a ‘clean’ three-element high-lift airfoil. The incidence angle of these airfoils was set to zero degrees.
Technical Paper

Performance Evaluation of Computational HIC Component Tester for Aerospace Application

2008-08-19
2008-01-2229
The necessity of avoiding the destructive and non-repeatable FSST (Full Scale Sled Test) makes it desirable to devise a cheaper and more repeatable method which can supplant this test procedure. This need developed the HCTD (HIC Component Testing Device) which is capable of providing conservative HIC results with higher repeatability. The computational model of the HCTD is validated against one of the tests conducted at CAMI with polyethylene foam. This validated model is used to conduct a series of tests with input parameters similar to the sled test to develop the correlation between the sled test and HCTD. This study hence concludes that a validated computational model of HCTD can be successfully utilized to address the HIC compliance issues for a foam padded surface.
Technical Paper

Studies of Flow Separation and Stalling on One- and Two-Element Airfoils at Low Speeds

1977-02-01
770442
Research has been conducted on the nature of airfoil behavior at pre- and post-separated angles of attack. Detailed wind tunnel studies have been made of boundary layer and wake fields for the GA(W)-1 airfoil, and the airfoil with a 0.3 chord Fowler flap. Experimental data are compared with theoretical predictions from a multi-element viscous flow computer program. Theoretical predictions are reasonably accurate for unseparated flows, but have serious errors when separation is present. Some recent techniques for modeling post-separated flow behavior are discussed in light of the present experiments.
Technical Paper

Studies of Hingeline Gap, Trailing Edge Treatment, Lower Surface Deflector on Spoiler Characteristics and Flow

1981-02-01
810564
Wind tunnel test have been conducted to determine effects of certain design variables on spoiler performance and spoiler flow field characteristics. Measurements include forces, oil flow surveys on a vertical splitter plate, and wake velocity and turbulence measurements using a dual split-film anemometer system. Results include the effects of spoiler design variables, such as: hingeline gap, lower surface venting and deflector, spoiler trailing edge notching and spoiler porosity. Hingeline gap, porosity, lower surface venting and lower surface deflector can be designed to reduce control dead-band tendency. Wake turbulence studies show that certain modifications can be utilized to diminish peak frequencies in the wake.
Technical Paper

Studies of Light-Twin Wing-Body Interference

1983-02-01
830709
The results of an analytical study of aerodynamic interference effects for a light twin aircraft are presented. The data presented concentrates on the influence of a wing on a body (the fuselage). Wind tunnel comparisons of three fillets are included, with corresponding computational analysis. Results indicate that potential flow analysis is useful to guide the design of intersection fairings, but experimental tuning is still required. While the study specifically addresses a light twin aircraft, the methods are applicable to a wide variety of aircraft.
Technical Paper

Tail Icing Effects on the Aerodynamic Performance of a Business Jet Aircraft

2002-11-05
2002-01-3007
Experimental studies were conducted to investigate the effect of tailplane icing on the aerodynamic characteristics of 15%-scale business jet aircraft. The simulated ice shapes selected for the experimental investigation included 9-min and 22.5-min smooth and rough LEWICE ice shapes and spoiler ice shapes. The height of the spoilers was sized to match the horns of the LEWICE shapes on the suction side of the horizontal tail. Tests were also conducted to investigate aerodynamic performance degradation due to ice roughness which was simulated with sandpaper. Six component force and moment measurements, elevator hinge moments, surface pressures, and boundary layer velocity profiles were obtained for a range of test conditions. Test conditions included AOA sweeps for Reynolds number in the range of 0.7 based on tail mean aerodynamic chord and elevator deflections in the range of -15 to +15 degrees.
Technical Paper

The Application of Neural Networks for Spin Avoidance and Recovery

1999-10-19
1999-01-5612
This paper presents a method by which artificial neural networks can be trained and used to identify a possible spin entry, differentiate between an incipient spin and a stabilized spin, and predict required recovery controls. These were then implemented into a simulation and tested using data from actual flight tests conducted by NASA Langley Research Center, to verify that artificial neural networks can successfully be used for this application. The spin avoidance and recovery system functioned properly. In addition, a weighting system was developed to predict possible spin characteristics of aircraft, depending on the relative magnitude of the three principal moments of inertia.
Technical Paper

Wind Tunnel and Flight Development of Spoilers for General Aviation Aircraft

1975-02-01
750523
Wind tunnel tests have been carried out to develop a spoiler lateral control system for use with the GA(W)-1 airfoil with a 30% Fowler flap. Tests show that unfavorable aerodynamic interactions can occur between spoiler and flap for large flap deflections. Providing venting of lower surface air through the spoiler opening substantially improves performance. Results of tests with a number of spoiler and cavity shapes are presented and discussed. Applications of two-dimensional wind tunnel results to the design of satisfactory manual lateral control systems are discussed.
X