Refine Your Search

Topic

Search Results

Technical Paper

Analysis and Modeling of Transmission Efficiency of Vehicle Driveline

2014-04-01
2014-01-1779
This work analyzes the transmission efficiency of vehicle driveline including the gearbox, universal transmission and differential. Based on the structure of transmission, mathematic models are built to analyze transmission's characteristics. However, an experiment reveals the limitation of this method. Then, the paper statistically analyzes the experimental data and mainly analyzes the influencing factors. Then Neural Network is used to build the efficiency model. A method called “filling data and gradually extrapolating” is used when building neural network model. Finally, the neural network model is used in the simulation of fuel consumption. The conclusion is Neural Network model can imitate the transmission efficiency of vehicle driveline efficiently, but its internal structure is not clear so other modeling methods are needed to be found.
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Technical Paper

Driving Path Planning System under Vehicular Active Safety Constraint

2016-09-27
2016-01-8105
Path planning system, which is one of driver assistance systems, can calculate the driving paths and estimate the driving time through the road information provided by information source. Traditional path planning systems calculate the driving paths through Dijsktra's algorithm or A* algorithm but only consider the road information from electronic maps. It is not safe enough for operating vehicles because of the insufficient information of vehicle performance as well as the driver's willingness. This study is based on the Dijsktra's algorithm, which comprehensively considered vehicular active safety constraints such as road information, vehicle performance and the driver's willingness to optimize the Dijsktra's algorithm. Then the path planning system can calculate the optimal driving paths that would satisfy the safety requirement of the vehicle. This study used LabVIEW as a visual host computer and MATLAB to calculate dynamic property of the vehicle.
Technical Paper

Energy Consumption of Passenger Compartment Auxiliary Cooling System Based on Peltier Effect

2017-03-28
2017-01-0155
The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
Technical Paper

Energy Saving Analysis of Vehicle Hydraulic Retarder Thermal Management System Based on Rankine Cycle

2016-09-18
2016-01-1941
Vehicle hydraulic retarders are applied in heavy-duty trucks and buses as an auxiliary braking device. In traditional cooling systems of hydraulic retarders, the working fluid is introduced into the heat exchanger to transfer heat to the cooling liquid in circulation, whose heat is then dissipated by the engine cooling system. This prevents the waste heat of the working fluid from being used effectively. In hydraulic retarder cooling system based on the Organic Rankine Cycle, the organic working fluid first transfers heat with the hydraulic retarder working fluid in Rankine cycle, and then outputs power through expansion machine. It can both reduce heat load of the engine cooling system, and enhance thermal stability of the hydraulic retarder while recovering and utilizing braking energy. First of all, according to the target vehicle model, hydraulic retarder cooling system model based on Rankine cycle is established.
Technical Paper

Evaluation Index System and Empire Analysis of Drivability for Passenger Car Powertrain

2021-04-06
2021-01-0710
In order to improve the driving experience of drivers and the efficiency of vehicle development, a method of objective drivability for passenger car powertrain is proposed, which is based on prior knowledge, principal component analysis (PCA) and SMART principle. First, drivability parameters of powertrain for passenger cars are determined according to working principle of powertrain, including engine torque, engine speed, gearbox position, accelerate pedal, brake pedal, steering wheel angle, longitudinal acceleration and lateral acceleration, etc. The drivability quantitative index system is designed based on field test data, prior knowledge and SMART principles. Then, D-S evidence theory and sliding window method are applied to identify objective drivability evaluation conditions of powertrain for passenger cars, including static gearshift conditions, starting conditions, creep conditions, tip-in, tip out, upshift conditions, acceleration, downshift conditions and de-acceleration.
Technical Paper

Evaluation of Objective Drivability for Passenger Cars Based on Hierarchical Mixture Model: A Case Study of Downshift Condition

2021-04-06
2021-01-0716
In order to solve the problems of insufficient accuracy for theoretical models and data-driven models for objective drivability evaluation requiring a large amount of data, an objective drivability evaluation method based on a hierarchical mixture model is proposed. First, a novel method of constructing a drivability evaluation system is developed, which combined by work breakdown structure (WBS) and analytic hierarchy process (AHP). Then, downshift condition is taken as a case study, and the subdivision condition is identified based on the hybrid mixture model. What's more, the drivability evaluation indexes of downshift condition are analyzed to establish the evaluation system of drivability.
Technical Paper

Evaporator Boiling Heat Transfer Analysis for Engine Exhaust Heat Recovery

2014-09-30
2014-01-2345
In the Rankine cycle, the pressure differential generated by the phase change of the working fluid produces turbine output power, which enables the recovery of waste heat from the internal combustion engine. The heat transfer ability of the evaporator is the key factor that determines the quality of turbine's mechanical work. In this paper, the performance of the evaporator with two-phase zone and preheated zone is studied. After obtaining the thermal characteristics of diesel engine exhaust from the experimental data, the mathematical model of the evaporator is built according to the specific working conditions of ORC and geometrical parameters of the evaporator. Three typical engine operating conditions are used to estimate the heat transfer characteristics of the evaporator. The result shows that, in the evaporator, the heat transfer coefficient of the Rankine working fluid is much greater than the exhaust side of the engine.
Technical Paper

Experimental Study on Drivability of Passenger Car with DCT Based on the Data-Driven Objective Evaluation Model

2021-04-06
2021-01-0691
In order to improve the drivability of passenger cars with dual clutch transmission (DCT) and reveal the criteria for objective evaluation criteria and characteristic index and feature index division of vehicles under specific working conditions, a drivability evaluation system that integrates data-driven and the consistency between subjective and objective is proposed. At first, combined with the control principle and dynamics theory of specific working conditions, a quantitative index system of vehicle drivability is constructed, including three modules: data source, evaluation working conditions and objective indicators. Then, a novel intelligent drivability objective evaluation tools (I-DOET) is designed, including data acquisition, de-noising, working condition recognition, feature extraction and automatic scoring.
Technical Paper

Model-Based Pressure Control for an Electro Hydraulic Brake System on RCP Test Environment

2016-09-18
2016-01-1954
In this paper a new pressure control method of a modified accumulator-type Electro-hydraulic Braking System (EHB) is proposed. The system is composed of a hydraulic motor pump, an accumulator, an integrated master cylinder, a pedal feel simulator, valves and pipelines. Two pressurizing modes are switched between by-motor and by-accumulator to adapt different pressure boost demands. A differentiator filtering raw sensor signal and calculating pedal speed is designed. By using the pedal feel simulator, the relationship between wheel pressures and brake force is decoupled. The relationships among pedal displacement, pedal force and wheel pressure are calibrated by experiments. A model-based PI controller with predictor is designed to lower the influences caused by delay. Moreover, a self-tuning regulator is introduced to deal with the parameter’s time-varying caused by temperature, brake pads wearing and delay variation.
Technical Paper

Multidisciplinary Design Optimization of BEV Body Structure

2015-01-14
2015-26-0229
Blade Electric Vehicle (BEV) with a light body plays an important role in saving the energy and reducing the exhaust emission. However, reducing the body weight need to meet the heterogeneous attributes such as structural, safety and NVH (Noise, Vibration and Harshness) performance. With the rapid development of finite element (FE) analysis technology, simulation analysis is widely used for researching the complex engineering design problem. Multidisciplinary Design Optimization (MDO) of a BEV body is a challenging but meaningful task in the automotive lightweight. In present research, the MDO is introduced to optimize a BEV Body-in-White (BIW).
Technical Paper

Nonlinear System Identification of Road Simulation Platform

2010-05-05
2010-01-1539
On road simulation, both the traditional iterative method based on frequency response function (FRF) and adaptive control method based on the CARMA model are realized by using linear model to identify the target test system. However the real test system is very complicated because of various nonlinear factors. Linear models approximately describe the system only in a small range. Therefore, system simulation methods can not be used to validate the developed control algorithm and the uncertainty of test accordingly increases. As mentioned above, this paper presents a model to identify the nonlinear test system using NARMA dynamic neural network and discusses how to make the model parameters in detail. Using the test input-output series data, this network was trained by Levenberg-Marquardt method. Results of verification simulation show the validation of the nonlinear model.
Technical Paper

Relationship between Braking Force and Pedal Force of a Pedal Controlled Parallelized Energy-Recuperation Retarder System

2014-04-01
2014-01-1783
Focusing the vehicle riding safety and global environmental problems, plenty of solutions on vehicle braking systems appeals during the recent period. Criteria and standards set up for commercial vehicles which should have equipped assisted braking systems were established by amounts of governments. Since eddy current retarders plays an important role in the area of assisted braking system, this article presents an energy-recuperation retarder, which is parallel connected with the driveline through a planet gear system. This paper offers a particular Energy-Recuperation Eddy Current Retarder (ERECR) system with a pedal control system and its characteristics is presented, either. Initially, the constitution of the energy-recuperation eddy current retarder system is established whereas the working principle of the energy-recuperation eddy current retarder is presented by modeling the system and simulation.
Technical Paper

Research on Correction Algorithm of Head-up Display System in Vehicle Vibration

2020-04-14
2020-01-1368
The head-up display system can overlay the real object with the projected image to assist the driver in driving. However, when road conditions are bad, the continuous vibration of the vehicle will cause the vehicle to tilt and shift. At this time, the projected image and the real object do not overlap well. This paper presents a correction algorithm for a head-up display system. The algorithm corrects the position of the projected image by inputting the tilt state of the vehicle. In this paper, the coordinate axis with the driver's eye as the origin is first established. Then the tilt state of the vehicle is decomposed into the rotation angle in three directions and the displacement in the vertical direction. Finally, the position of the projected image is corrected by inputting the tilt state of the vehicle so that the projected image can remain on the real object at all times. The simulation model is established in Unity3D.
Technical Paper

Research on Objective Drivability Evaluation with Multi-Source Information Fusion for Passenger Car

2020-04-14
2020-01-1044
The drivability plays an important role for marketability and competitiveness of passenger car in meeting some customer requirements, which directly affects the driving experience and the desire of purchasing. In this paper, a framework of objective drivability evaluation with multi-source information fusion for passenger car is proposed. At first, according to vehicle powertrain system and optimization theory, certain vehicle performances, which are closely related to objective drivability are analyzed, including vehicle longitudinal acceleration, vehicle speed, engine torque, engine speed, gear position, accelerator pedal, brake signal and voltage signal. Then, combined with the evaluation criterion of signal-to-noise ratio (SNR), mean error (ME), root mean squared error (RMSE) and signal smoothness (SS), a de-noising method is developed for the drivability evaluation information.
Technical Paper

Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber

2018-04-03
2018-01-0582
The current paper proposes a hydraulic interconnected suspension system (HIS) based on a hydraulic energy-regenerative shock absorber (HESA) comparatively with the passive suspensions. The structure and working principles of the HIS system are introduced in order to investigate the damping performance and energy regeneration characteristics of the proposed system. Then, the dynamic characteristics of the HIS-HESA system have been investigated based on a 4-DOF longitudinal half vehicle model. In the simulation, two different road inputs were used in the dynamic characterization of the HIS-HESA; the warp sinusoidal excitation, and the random road signal. In addition, a comparative analysis was provided for the dynamic responses of the half vehicle model for both the HIS-HESA and the conventional suspension. Furthermore, a parametric analysis of the HIS-HESA has been carried out highlining the key parameters that have a remarkable effect on the HIS-HESA performance.
Technical Paper

Simulation based Evaluation of the Electro-Hydraulic Energy-Harvesting Suspension (EHEHS) for Off-Highway Vehicles

2015-04-14
2015-01-1494
Nowadays, off-highway vehicles enjoyed a significant status in the national defense and civil construction. There is no doubt that the working conditions of off-highways are quite different from the conventional passenger cars, hence, their suspensions are particularly designed. Since the hydro-pneumatic suspension technology is maturely applied in engineering machinery, this paper presents a concept for a novel energy-harvesting device, which is applied in off-highway vehicles based on hydro-pneumatic suspension, namely, electro-hydraulic energy-harvesting suspension (EHEHS). The EHEHS took the fundamental of mechanism-electronic-hydraulic system, which consisted the following elements: a cylinder, 2 check valves, a hydro-pneumatic spring, a hydraulic motor, a DC motor, a processing circuit and a battery. In the EHEHS system, the cylinder is used to transmit the vibration energy into hydraulic energy, which is stored in hydro-pneumatic spring.
Technical Paper

Strength Analysis and Modal Analysis of Hydraulic Retarder

2009-10-06
2009-01-2896
Hydraulic retarder is one of main auxiliary braking devices of the vehicle. When the vehicle is braking, a great pressure from high-speed fluid is received by hydraulic retarder blades. It is difficult to predict rational hydraulic retarder strength, owing to the complexity of the internal flow of oil. An optimal calculation way of hydraulic retarder strength is proposed based on CFD and FEA, concluding a reasonable result. The 3-D model of hydraulic retarder is built in the general CAD software. The model of fluid passage is extracted, according to the condition when the whole flow passage is filled with oil, and imported to CFD software. The inner flow field of hydraulic retarder is analyzed and the hydraulic surface pressure distribution of the hydraulic retarder blade is obtained at the highest rotary speed of turbine wheel.
Technical Paper

Study of Energy Recovery System Based on Organic Rankine Cycle for Hydraulic Retarder

2016-04-05
2016-01-0239
The hydraulic retarder is an auxiliary braking device used in heavy duty vehicle. It generates braking forceby liquid damping effect and makes inertial energy into thermal energy of the transmission medium when the vehicleis in thedownhill. The traditional thermal management system of the hydraulic retarder dissipates the heat of transmission medium out of the vehicle directly, which causes a big waste of energy, meanwhilethe thermal management system components need to consume engine power. This study applies organic Rankine cycle (ORC)cooling system to meet the high power cooling requirements of the hydraulic retarder and recover waste heat energy from the transmission medium at the same time and then supply energy to the thermal management system, which could save the parasitic power of the engine and improve the comprehensive energy utilization ratio of the vehicle.
Technical Paper

Study on the Effects of Magnetic Field on Magnetorheological Fluid Hydraulic Retarder Braking Torque

2017-09-17
2017-01-2503
In order to ensure driving safety, heavy vehicles are often equipped with hydraulic retarder, which provides sustained, stable braking torque and converts the vehicle kinetic energy into heat taken away by the cooling system when traveling on a long downhill. The conventional hydraulic retarder braking torque is modulated by adjusting the liquid filling rate, which leads to slow response and difficult control. In this paper, a new kind of magnetorheological (MR) fluid hydraulic retarder is designed by replacing the traditional transmission oil with MR fluid and arranging the excitation coils outside the working chamber. The braking torque can be controlled by the fluid viscosity of MR fluid with the variation of magnetic field. Compared with the traditional hydraulic retarder, the system has the advantages of fast response, easy control and high adjustment sensitivity.
X