Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Comparison of Tailpipe Gaseous Emissions for RDE and WLTC Using SI Passenger Cars

2017-10-08
2017-01-2391
The drive characteristics and gaseous emissions of legislated Real Driving Emissions (RDE) test data from 8 different spark ignition vehicles were compared to data from corresponding Worldwide harmonized Light vehicles Test Cycle (WLTC) tests. The effect of the official RDE exclusion of cold start and idling on the RDE test, and the effect of the use of the moving averaging window (MAW) analysis technique, were simultaneously investigated. Specific attention was paid to differences in drive characteristics of the three different driving modes and the effect this had on the distance-based CO2, CO and NOx emission factors for each. The average velocity of the RDE tests was marginally greater than the WLTC tests, while the average acceleration was smaller. The CO2 emission appeared on average 4% lower under the RDE tests compared to the WLTC tests, while the CO was 60% lower. The NOx values were 34% lower under the RDE testing, and appeared to be linked to the average acceleration.
Technical Paper

A Modeling Study of the Effects of Butanol Addition on Aromatic Species in Premixed Butane Flames

2016-04-05
2016-01-0574
The motivation of the present work was to understand the mechanism by which alcohols produce less aromatic species in their combustion process than an equal amount of hydrocarbon with similar molecular structure does. Due to its numerous advantages over short-chain alcohols, butanol has been considered very promising in soot reduction. Excluding the influence of spray, vaporization and mixing process in engine cases, an adiabatic constant-pressure reactor model was applied to investigate the effect of butanol additives on aromatic species, which are known to be soot precursors, in fuel-rich butane flames. To keep the carbon flux constant, 5% and 10% oxygen by mass of the fuel were added to butane using butanol additive, respectively. Based on the soot reduction effects proposed in literature, effects on temperature, key radical concentrations and the carbon removal from the pathway to aromatic species were considered to identify the major mechanism of reduction in aromatic species.
Technical Paper

A Numerical Study on the Effects of Hot EGR on the Operation of Natural Gas Engine Ignited by Diesel-Butanol Blends

2017-03-28
2017-01-0760
Butanol, which is a renewable biofuel, has been regarded as a promising alternative fuel for internal combustion engines. When blended with diesel and applied to pilot ignited natural gas engines, butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency. However, high blend ratio of butanol is limited by its longer ignition delay caused by the higher latent heat and higher octane number, which restricts the improvement of emission characteristics. In this paper, the potential of increasing butanol blend ratio by adding hot exhaust gas recirculation (EGR) is investigated. 3D CFD model based on a detailed kinetic mechanism was built and validated by experimental results of natural gas engine ignited by diesel/butanol blends. The effects of hot EGR is then revealed by the simulation results of the combustion process, heat release traces and also the emissions under different diesel/butanol blend ratios.
Technical Paper

A Study of Hydrogen Internal Combustion Engine EGR System

2014-04-01
2014-01-1071
NOx are the only harmful emissions of hydrogen internal combustion engine. EGR is one of the effective methods to reduce NOx. The traditional EGR is not suitable for hydrogen internal combustion engine. Therefore, the study of influence of hot EGR on hydrogen internal combustion engine is important. A 2.0L hydrogen internal combustion engine with hot EGR system model is employed to optimize the diameter and position of hot EGR based on a simulation analysis. The result shows that both of the combustion temperature and NOx increase as EGR increases due to the rise of intake temperature for low load condition, for heavy load, with the increase of EGR rate, NOx emissions decreases slightly before the mixture equivalence ratio comes to 1and then dropped significantly after the mixture equivalence ratio greater than 1. Unburned hydrogen in TWC has the effect of reducing NOx after catalysts decrease largely.
Technical Paper

A Study of the Adaptability of Three Way Catalytic Converter under Hydrogen-Gasoline Dual-Fuel Alternate Working Mode

2014-04-01
2014-01-1342
Nowadays, the world is facing severe energy crisis and environment problems. Development of hydrogen fuel vehicles is one of the best ways to solve these problems. Due to the difficulties of infrastructures, such as the hydrogen transport and storage, hydrogen fuel vehicles have not been widely used yet. As a result, Hydrogen-gasoline dual-fuel vehicle is a solution as a compromise. In this paper, three way catalytic converter (TWC) was used to reduce emissions of hydrogen-gasoline dual-fuel vehicles. On wide open throttle and load characteristics, the conversion efficiency of TWC in gasoline engine was measured. Then the TWC was connected to a hydrogen internal combustion engine. After switching the hydrogen and gasoline working mode, emission data was measured. Experiment results show that the efficiency of a traditional TWC can be maintained above 85%., while it works in a hydrogen-gasoline dual-fuel alternative working mode.
Technical Paper

An Experimental Investigation on Combustion and Emissions Characteristics of Turbocharged DI Engines Fueled with Blends of Biodiesel

2005-05-11
2005-01-2199
Turbocharged and intercooled DI engines, fueled with different blends of biodiesel and diesel fuel, were chosen to conduct performance and emission tests on dynamometers. The properties of the test fuels were tested. The cylinder pressure and fuel injection pressure signals were recorded and combustion analysis was conducted. The engine exhaust emissions were measured. The results of the study indicated that HC, CO, PM and smoke emissions improvement was obtained. But there was an increase in fuel consumption and NOx emission, and a slight drop in power with the blends. The combustion analysis showed that biodiesel had a shorter ignition delay and a lower premixed combustion amount, but had an early start of injection caused by the fuel properties. The relationship between combustion and emissions was discussed.
Technical Paper

An Experimental Investigation on Removing PM and NOX Simultaneously from Diesel Exhaust

2008-06-23
2008-01-1793
In order to achieve simultaneous removal of particulate matters (PM) and NOX in diesel exhaust, a new kind of aftertreatment prototype has been developed. The prototype combined effects of static, cyclone, non-thermal plasma and hydrocarbon selective catalytic reduction. Experiments have been carried out with standard gases simulating diesel exhaust. Physical and chemical effects that took place in the prototype are as follows: the collection of PM by electrostatic-cyclone system, the oxidative combustion of PM, the selective catalytic reduction of NOX, and the reaction between PM and NOX. The effect of non-thermal plasma makes the density of NO decrease and that of NO2 increase, whereas, the amount of NOX remains the same. Employing catalyst coupled with non-thermal plasma debase the temperature by about 50◻, there the peak value of transform rate appears.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Analysis of Combustion and Particulate Emissions when Hydrogen is Aspirated into a Gasoline Direct Injection Engine

2010-04-12
2010-01-0580
A single-cylinder Gasoline Direct Injection Engine (GDI) engine with a centrally mounted spray-guided injection system (150 bar fuel pressure) has been operated with stoichiometric and rich mixtures. The base fuel was 65% iso-octane and 35% toluene; hydrogen was aspirated into a plenum in the induction system, and its equivalence ratios were set to 0, 0.02, 0.05 and 0.1. Ignition timing sweeps were conducted for each operating point. Combustion was speeded up by adding hydrogen as expected. In consequence the MBT ignition advance was reduced, as were cycle-by-cycle variations in combustion. Adding hydrogen led to the expected reduction in IMEP as the engine was operated at a fixed manifold absolute pressure (MAP). An engine model has also been set up using WAVE. Particulate Matter (PM) emissions were measured with a Cambustion DMS500 particle sizer.
Technical Paper

Application of Vortex Control to an Automotive Transcritical R744 Ejector Cycle

2018-04-03
2018-01-0060
Expansion work recovery by two-phase ejector is known to be beneficial to vapor compression cycle performance. However, one of the biggest challenges with ejector vapor compression cycles is that the ejector cycle performance is sensitive to working condition changes which are common in automotive applications. Different working conditions require different ejector geometries to achieve maximum performance. Slightly different geometries may result in substantially different COPs under the same conditions. The ejector motive nozzle throat diameter (motive nozzle restrictiveness) is one of the key parameters that can significantly affect ejector cycle COP. This paper presents the experimental results of the application of a new two-phase nozzle restrictiveness control mechanism to an automotive transcritical R744 ejector cycle.
Technical Paper

Characterization Spray and Combustion Processes of Acetone-Butanol-Ethanol (ABE) in a Constant Volume Chamber

2015-04-14
2015-01-0919
Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
Technical Paper

Combustion Characteristics in a Constant Volume Chamber of Diesel Blended with HTL

2019-04-02
2019-01-0578
There are a few different ways in which biofuels can be sourced, with the most popular coming from agricultural sources. An alternative approach is to utilize biowaste. An estimated 20 million dry tons of volatile organic compounds, or biowaste, is annually deposited in US municipal wastewaters. Most of this biowaste energy content is not recovered and, as a result, the biowaste could be a massive potential source of renewable energy. Biocrude diesel is converted from wet biowaste via hydrothermal liquefaction (HTL). Three types of feedstocks (algae, swine manure, and food processing waste) were converted into biocrude oil via HTL. From the previous experiments done in an AVL 5402 single-cylinder diesel engine, it was observed that the presence of 20% of HTL in the blend performed similarly during combustion to pure diesel. By studying these mixtures in a constant volume chamber, these observations could be compared to the results in the diesel engine.
Technical Paper

Combustion Characteristics of Acetone, Butanol, and Ethanol (ABE) Blended with Diesel in a Compression-Ignition Engine

2016-04-05
2016-01-0884
Acetone-Butanol-Ethanol (ABE) is an intermediate product in the ABE fermentation process for producing bio-butanol. As an additive for diesel, it has been shown to improve spray evaporation, improve fuel atomization, enhance air-fuel mixing, and enhance combustion as a whole. The typical compositions of ABE are in a volumetric ratio of 3:6:1 or 6:3:1. From previous studies done in a constant volume chamber, it was observed that the presence of additional acetone in the blend caused advancement in the combustion phasing, but too much acetone content led to an increase in soot emission during combustion. The objective of this research was to investigate the combustion of these mixtures in a diesel engine. The experiments were conducted in an AVL 5402 single-cylinder diesel engine at different speeds and different loads to study component effects on the various engine conditions. The fuels tested in these experiments were D100, ABE(3:6:1)10, ABE(3:6:1)20, ABE(6:3:1)10, and ABE(6:3:1)20.
Technical Paper

Combustion Characteristics of Diesel Spray with Temporally-Splitting High-Pressure Injection

2015-11-17
2015-32-0825
The effect of temporally-splitting high pressure injection on Diesel spray combustion and soot formation processes was studied by using the high-speed video camera. The spray was injected by the single-hole nozzle with a hole diameter of 0.11mm into the high-pressure and high-temperature constant volume vessel. The free spray and the spray impingement on the two dimensional (2D) piston cavity wall were examined. Injection pressures of 100 and 160 MPa for the single injection and 160 MPa for the split injection were selected. The flame structure and soot formation process were examined by using the two-color pyrometry. The soot generated in the flame under the split injection under 160 MPa becomes higher than that of the single injection under 160 MPa.
Journal Article

Combustion and Emission Characteristics of a Heavy-Duty Diesel Engine at Idle at Various Altitudes

2013-04-08
2013-01-1516
This present paper described an experimental study on the combustion and emission characteristics of a diesel engine at idle at different altitudes. Five altitudes ranging from 550m to up to 4500m were investigated. Combustion parameters including in-cylinder pressure and temperature, heat release, fuel mass burning and so forth, together with emission factors including CO, HC, NOx and PM were tested and analyzed. The result of on-board measurement manifested that in-cylinder pressure descended consistently with the rising of altitude, while both the maximum in-cylinder temperature and exhaust temperature ascended with the altitude. It was found that ignition delay was lengthened at higher altitude, but the combustion duration became shorter. The crank angle towards 90% fuel burnt has hardly changed with the variation of altitude. As for heat release, the difference of slopes observed at different altitudes was quite slight.
Technical Paper

Comparative Research on Emission Characteristic and Combustion Characteristic of Gasoline Direct Injection and Port Fuel Injection for Free-Piston Linear Generator

2020-09-15
2020-01-2220
As a new type of energy, free-piston linear generator (FPLG) attracts more research on its stable operation and power performance, while less on its combustion and emission performance. So, in this paper, the emission characteristics of FPLG in two different modes are studied through a port fuel injection (PFI) mode which was verified by the experiment and a gasoline direct injection (GDI) mode. The results showed that: both the GDI mode and the PFI mode produced large amounts of nitrogen oxide (NOx) during the working process. But the GDI mode produced before the PFI mode and it produced nearly 2 times than the PFI mode. However, the formation rate of NOx in GDI mode is much lower than that in PFI mode. Meanwhile, in both modes, 90% of NOX was generated in the cylinder at the temperature higher than 1750K, and only about 10% of NOX was generated at a temperature lower than 1750K.
Technical Paper

Comparison Study on Combustion and Emission Characteristics of ABE/IBE-Diesel Blends in a Common-Rreail Diesel Engine

2017-10-08
2017-01-2321
Bio-butanol has been considered as a promising alternative fuel for internal combustion engines due to its advantageous physicochemical properties. However, the further development of bio-butanol is inhibited by its high recovery cost and low production efficiency. Hence, the goal of this study is to evaluate two upstream products from different fermentation processes of bio-butanol, namely acetone-butanol-ethanol (ABE) and isopropanol-butanol-ethanol (IBE), as alternative fuels for diesel. The experimental comparison is conducted on a single-cylinder and common-rail diesel engine under various main injection timings (MIT) and equivalent engine load (EEL) conditions. The experimental results show that ABE and IBE significantly affect the combustion phasing. The start of combustion (SOC) is retarded when ABE and IBE are mixed with diesel. Furthermore, the ABE/IBE-diesel blends are more sensitive to the changes in MIT compared with that of pure diesel.
Technical Paper

Comparison of CO2 and R134a Two-Phase Ejector Performance for Use in Automotive Air Conditioning Applications

2014-04-01
2014-01-0689
Two-phase ejectors are devices capable of recovering the expansion power that is lost by the throttling process in air conditioning cycles, resulting in improved system performance. High-pressure fluids such as CO2 have received the majority of attention in two-phase ejector studies in recent years due to the fluid's high throttling loss and high potential for improvement. However, low-pressure working fluids such as R134a, commonly used in automotive applications, have received considerably less attention owing to their lower recovery potential. While the two fluids have very different properties, both offer the potential for noticeable COP improvement with ejector cycles. Thus, understanding the operation and performance of ejectors with both fluids can be important to the design of ejector air conditioning cycles. This paper compares available experimental data for the performance of two-phase ejectors using CO2 and R134a.
Technical Paper

Comparison of Regulated Emissions and Particulate Matter of Gasoline/CNG Dual-Fuel Taxi Over New European Driving Cycle

2014-04-01
2014-01-1467
Compressed natural gas (CNG) is widely used as an alternative option in spark ignition engines because of its better fuel economy and in part cleaner emissions. To cope with the haze weather in Beijing, about 2000 gasoline/CNG dual-fuel taxis are servicing on-road. According to the government's plan, the volume of alternative fuel and pure electric vehicle will be further increased in the future. Thus, it is necessary to conduct an evaluation on the effectiveness of alternative fuel on curbing vehicular emissions. This research examined the regulated emissions and particulate matter of gasoline/CNG dual-fuel taxi over New European Driving Cycle (NEDC). Emission tests in gasoline- and CNG-fuelled, cold- and warm-start modes were done for all five taxies. Test vehicles, Hyundai Elantra, are powered by 1.6L spark-ignited engines incorporated with 5-gear manual gearboxes.
Technical Paper

Computational Study of the Equivalence Ratio Distribution from a Diesel Pilot Injection with Different Piston Geometry, Injection Timing and Velocity Initialization in a HSDI Engine

2014-04-01
2014-01-1110
In the new combustion strategies such as RCCI and dual-fuel combustion, the diesel pilot injection plays a pivotal role as it determines the ignition characteristics of the mixture and ultimately the combustion and emission performance. In this regard, equivalence ratio distribution resulted from the pilot injection becomes very important. In this work, computation study is carried out using KIVA-3V to simulate the engine compression stroke from intake valve close (IVC) to close to TDC so as to investigate the impact of piston geometry, injection start timing and flow initialization on the equivalence ratio distribution from a pilot injection in HSDI engine.
X