Refine Your Search

Topic

Search Results

Technical Paper

A Hybrid Classification of Driver’s Style and Skill Using Fully-Connected Deep Neural Networks

2021-02-03
2020-01-5107
Driving style and skill classification are of great significance in human-oriented advanced driver-assistance system (ADAS) development. In this paper, we propose Fully-Connected Deep Neural Networks (FC-DNN) to classify drivers’ styles and skills with naturalistic driving data. Followed by the data collection and pre-processing, FC-DNN with a series of deep learning optimization algorithms are applied. In the experimental part, the proposed model is validated and compared with other commonly used supervised learning methods including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and multilayer perceptron (MLP). The results show that the proposed model has a higher Macro F1 score than other methods. In addition, we discussed the effect of different time window sizes on experimental results. The results show that the driving information of 1s can improve the final evaluation score of the model.
Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

2016-09-14
2016-01-1892
The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Technical Paper

A Novel Vision-Based Framework for Real-Time Lane Detection and Tracking

2019-04-02
2019-01-0690
Lane detection is one of the most important part in ADAS because various modules (i.e., LKAS, LDWS, etc.) need robust and precise lane position for ego vehicle and traffic participants localization to plan an optimal routine or make proper driving decisions. While most of the lane detection approaches heavily depend on tedious pre-processing and great amount of assumptions to get reasonable result, the robustness and efficiency are deteriorated. To address this problem, a novel framework is proposed in this paper to realize robust and real-time lane detection. This framework consists of two branches, where canny edge detection and Progressive Probabilistic Hough Transform (PPHT) are introduced in the first branch for efficient detection.
Technical Paper

A Path Planning and Model Predictive Control for Automatic Parking System

2020-04-14
2020-01-0121
With the increasing number of urban cars, parking has become the primary problem that people face in daily life. Therefore, many scholars have studied the automatic parking system. In the existing research, most of the path planning methods use the combined path of arc and straight line. In this method, the path curvature is not continuous, which indirectly leads to the low accuracy of path tracking. The parking path designed using the fifth-order polynomial is continuous, but its curvature is too large to meet the steering constraints in some cases. In this paper, a continuous-curvature parking path is proposed. The parking path tracker based on Model Predictive Control (MPC) algorithm is designed under the constraints of the control accuracy and vehicle steering. Firstly, in order to make the curvature of the parking path continuous, this paper superimposes the fifth-order polynomial with the sigmoid function, and the curve obtained has the continuous and relatively small curvature.
Journal Article

An Indirect TPMS Algorithm Based on Tire Resonance Frequency Estimated by AR Model

2016-04-05
2016-01-0459
Proper tire pressure is very important for multiple driving performance of a car, and it is necessary to monitor and warn the abnormal tire pressure online. Indirect Tire Pressure Monitoring System (TPMS) monitors the tire pressure based on the wheel speed signals of Anti-lock Braking System (ABS). In this paper, an indirect TPMS method is proposed to estimate the tire pressure according to its resonance frequency of circumferential vibration. Firstly, the errors of ABS wheel speed sensor system caused by the machining tolerance of the tooth ring are estimated based on the measured wheel speed using Recursive Least Squares (RLS) algorithm and the measuring errors are eliminated from the wheel speed signal. Then, the data segments with drive train torsional vibration are found out and eliminated by the methods of correlation analysis.
Technical Paper

Analysis and Design of Personalized Adaptive Cruise System

2020-05-19
2020-01-5053
The global adaptive cruise control (ACC) market is expected to witness a compound annual growth rate of 18.3% during the forecast period to reach $15,290 million by 2023 [1]. The driver uses an ACC system to reduce the driving burden and improve safety. The ACC mode in a car is fixed, but different drivers have different driving habits. This paper will verify this through experiments and divide drivers into three categories according to the drivers’ driving habits. Therefore, we will design a personalized ACC, wherein an ACC system, under the same working conditions, can have different acceleration and deceleration to meet the needs of different types of drivers. Therefore, this paper collects driver data, analyzes model data and identifies its parameters, and finally verifies the different effects of personalized ACC through simulation.
Technical Paper

Comparative Analysis of Clustering Algorithms Based on Driver Steering Characteristics

2024-04-09
2024-01-2570
Driver steering feature clustering aims to understand driver behavior and the decision-making process through the analysis of driver steering data. It seeks to comprehend various steering characteristics exhibited by drivers, providing valuable insights into road safety, driver assistance systems, and traffic management. The primary objective of this study is to thoroughly explore the practical applications of various clustering algorithms in processing driver steering data and to compare their performance and applicability. In this paper, principal component analysis was employed to reduce the dimension of the selected steering feature parameters. Subsequently, K-means, fuzzy C-means, the density-based spatial clustering algorithm, and other algorithms were used for clustering analysis, and finally, the Calinski-Harabasz index was employed to evaluate the clustering results. Furthermore, the driver steering features were categorized into lateral and longitudinal categories.
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Journal Article

Detection & Tracking of Multi-Scenic Lane Based on Segnet-LSTM Semantic Split Network

2021-04-06
2021-01-0083
Lane detection is an important component in automatic pilot system and advanced driving assistance system (ADAS). The stability and precision of lane detection will directly determine precision of control and lane plan of vehicles. Traditional mechanical vision lane detection approaches in complicated environment have the deficiencies of low precision and feature semantic description disabilities. But the lane detection depending on deep learning, e.g. SCNN network, LaneNet network, ENet-SAD network have imbalance problems of splitting precision and storage usage. This paper proposes an approach of high-efficiency deep learning Segnet-LSTM semantic segmentation network. This network structure is composed with encoding network and corresponding decoding networks. First, convolution and maximum pooling. The proposal extracts texture details of five images and stores searching position of maximum pooling. Meanwhile, it will implement interpolate processing to the lost points.
Technical Paper

Driver Behavior Characteristics Identification Strategy for Adaptive Cruise Control System with Lane Change Assistance

2017-03-28
2017-01-0432
Adaptive cruise control system with lane change assistance (LCACC) is a novel advanced driver assistance system (ADAS), which enables dual-target tracking, safe lane change, and longitudinal ride comfort. To design the personalized LCACC system, one of the most important prerequisites is to identify the driver’s individualities. This paper presents a real-time driver behavior characteristics identification strategy for LCACC system. Firstly, a driver behavior data acquisition system was established based on the driver-in-the-loop simulator, and the behavior data of different types of drivers were collected under the typical test condition. Then, the driver behavior characteristics factor Ks we proposed, which combined the longitudinal and lateral control behaviors, was used to identify the driver behavior characteristics. And an individual safe inter-vehicle distances field (ISIDF) was established according to the identification results.
Technical Paper

Driving Path Planning System under Vehicular Active Safety Constraint

2016-09-27
2016-01-8105
Path planning system, which is one of driver assistance systems, can calculate the driving paths and estimate the driving time through the road information provided by information source. Traditional path planning systems calculate the driving paths through Dijsktra's algorithm or A* algorithm but only consider the road information from electronic maps. It is not safe enough for operating vehicles because of the insufficient information of vehicle performance as well as the driver's willingness. This study is based on the Dijsktra's algorithm, which comprehensively considered vehicular active safety constraints such as road information, vehicle performance and the driver's willingness to optimize the Dijsktra's algorithm. Then the path planning system can calculate the optimal driving paths that would satisfy the safety requirement of the vehicle. This study used LabVIEW as a visual host computer and MATLAB to calculate dynamic property of the vehicle.
Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Technical Paper

Fuel-Efficient Driving for Motor Vehicles Based on Slope Recognition

2017-03-28
2017-01-0037
The drivers' hysteretic perception to surrounding environment will affect vehicular fuel economy, especially for the heavy-duty vehicles driving under complex conditions and long distance in mountainous areas. Unreasonable acceleration or deceleration on the slope will increase the fuel consumption. Improving the performance of the engine and the transmission system has limited energy saving potential, and most fuel-efficient driving assistant systems don't consider the road conditions. The main purpose of this research is to introduce an economic driving scheme with consideration of the prestored slope information in which the vehicle speed in mountainous slopes is reasonably planned to guide the driver's behavior for reduction of the fuel consumption. Economic driving optimization algorithm with low space dimension and fast computation speed is established to plan accurate and real-time economic driving scheme.
Technical Paper

Fuzzy Control Model of Intelligent Lane-Changing Decision Based on Genetic Algorithm Optimization

2021-03-09
2021-01-5017
Based on the fuzzy inference system, it constructs a discretionary lane-changing decision model for different types of preceding vehicles and compares and analyzes the parameter differences of their input membership functions. According to the driver questionnaire survey, the model uses three parameters that drivers can easily percept as the model input—preceding vehicle distance in the current lane, preceding vehicle distance in the target lane, and following-vehicle distance in the target lane—uses Next-Generation Simulation (NGSIM) vehicle trajectory data to optimize the input membership functions of models based on genetic algorithm according to different vehicle lane-changing trajectory data to analyze the impact of the preceding vehicle type before lane change to the intelligent lane-changing decision.
Journal Article

GPS Modeling for Vehicle Intelligent Driving Simulation

2018-04-03
2018-01-0763
In recent years, intelligent vehicles have become one of the major research topics in vehicle engineering and have created a new opportunity for the automotive industry. Simulation and real experiment are both essential to the development of intelligent vehicle technologies. Vehicle positioning systems, such as global positioning system (GPS), play an important role in intelligent vehicle development. The GPS model plays a major part in the development of intelligent vehicle simulation systems. Primarily focusing on application requirements of intelligent vehicle simulation platforms for GPS sensor modeling, considering the major factors affecting positioning accuracy in vehicle driving environments, this article establishes a new GPS model and algorithm based on the physical and functional characteristics of GPS. As the basis of this model system, a precise ephemeris model is established to obtain the coordinates of GPS satellites at any given time.
Technical Paper

Hierarchical Control Strategy of Predictive Energy Management for Hybrid Commercial Vehicle Based on ADAS Map

2023-04-11
2023-01-0543
Considering the change of vehicle future power demand in the process of energy distribution can improve the fuel saving effect of hybrid system. However, current studies are mostly based on historical information to predict the future power demand, where it is difficult to guarantee the accuracy of prediction. To tackle this problem, this paper combines hybrid energy management with predictive cruise control, proposing a hierarchical control strategy of predictive energy management (PEM) that includes two layers of algorithms for speed planning and energy distribution. In the interest of decreasing the energy consumed by power components and ensuring transportation timeliness, the upper-level introduces a predictive cruise control algorithm while considering vehicle weight and road slope, planning the future vehicle speed during long-distance driving.
Technical Paper

Hierarchical Framework for Adaptive Cruise Control with Model Predictive Control Method

2017-09-23
2017-01-1963
Adaptive cruise control (ACC), as one of the advanced driver assistance systems (ADAS), has become increasingly popular in improving both driving safety and comfort. Since the objectives of ACC can be multi-dimensional, and often conflict with each other, it is a challenging task in its control design. The research presented in this paper takes ACC control design as a constrained optimization problem with multiple objectives. A hierarchical framework for ACC control is introduced, aimed to achieve optimal performance on driving safety and comfort, speed and/or distance tracking, and fuel economy whenever possible. Under the hierarchical framework, the operational mode is determined in the upper layer, in which a model predictive control (MPC) based spacing controller is employed to deal with the multiple control objectives. On the other hand, the lower layer is for actuator control, such as braking and driving control for vehicle longitudinal dynamics.
Technical Paper

Intention-aware Lane Changing Assistance Strategy Basing on Traffic Situation Assessment

2020-04-14
2020-01-0127
Traffic accidents avoidance is one of the main advantages for automated vehicles. As one of the main causes of vehicle collision accidents, lane changing of the ego vehicle in case that the obstacle vehicles appear in the blind spot with uncertain motion intentions is one of the main goals for the automated vehicle. An intention-aware lane changing collision assistance strategy basing on traffic situation assessment in the complex traffic scenarios is proposed in this paper. Typical Regions of Interest (ROI) within the detection range of the blind spots are selected basing on the road topology structures and state space consisting of the ego vehicle and the obstacle vehicles. Then the motion intentions of the obstacle vehicles in ROI are identified basing on Gaussian Mixture Models (GMM) and the corresponding motion trajectories are predicted basing on the state equation.
Technical Paper

Lane Detection and Pixel-Level Tracking for Autonomous Vehicles

2022-03-29
2022-01-0077
Lane detection and tracking play a key role in autonomous driving, not only in the LKA System but help estimate the pose of the vehicle. While there has been significant development in recent years, traditional outdoor SLAM algorithms still struggle to provide reliable information in challenging dynamic environments such as lack of roadside landscape or surrounding vehicles at almost the same speed or on the road in the woods. On the structured road, lane markings as static semantic features may provide a stable landmark assist in robust localization. As most of the current lane detection work mainly on separated images ignoring the relationship between adjacent frames, we propose a pixel-level lane tracking method for autonomous vehicles. In this paper, we introduce a deep network to detect and track lane features. The network has two parallel branches. One branch detects the lane position, while the other extracts the point description on a pixel level.
X