Refine Your Search

Topic

Author

Search Results

Technical Paper

04 Emission Reduction by Cylinder Wall Injection in 2-Stroke S.I. Engines

2002-10-29
2002-32-1773
A direct injection system in which fuel was injected through the cylinder wall was developed and detailed investigation was made for the purpose of reducing short-circuit of fuel in 2-stroke engines. As a result of dynamo tests using 430cc single cylinder engine, it was found that the injector was best attached at a location as close to TDC as possible on the rear transfer port side, and that the entire amount of fuel should be injected towards the piston top surface. Emissions were worsened if fuel was injected towards the exhaust port or spark plug. Although the higher injection pressure resulted in large emissions reduction effects, it did not have a significant effect on fuel consumption. When a butterfly exhaust valve, known to be effective against irregular combustion in the light load range, was applied, it was found to lead to further reductions in HC emission and fuel consumption while also improving combustion stability.
Technical Paper

A Computational Analysis of Direct Fuel Injection During the Negative Valve Overlap Period in an Iso-Octane Fueled HCCI Engine

2007-04-16
2007-01-0227
This computational study compares predictions and experimental results for the use of direct injected iso-octane fuel during the negative valve overlap (NVO) period to achieve HCCI combustion. The total fuel injection was altered in two ways. First the pre-DI percent, (the ratio of direct injected fuel during the NVO period “pre-DI” to the secondary fuel supplied at the intake manifold “PI”), was varied at a fixed pre-DI injection timing, Secondly the timing of the pre-DI injection was varied while all of the fuel was supplied during the NVO period. A multi-zone, two-dimensional CFD simulation with chemistry was performed using KIVA-3V release 2 implemented with the CHEMKIN solver. The simulations were performed during the NVO period only.
Technical Paper

A Computational Investigation into the Cool Flame Region in HCCI Combustion

2004-03-08
2004-01-0552
Multi-dimensional computational efforts using comprehensive and skeletal kinetics have been made to investigate the cool flame region in HCCI combustion. The work was done in parallel to an experimental study that showed the impact of the negative temperature coefficient and the cool flame on the start of combustion using different fuels, which is now the focus of the simulation work. Experiments in a single cylinder CFR research engine with n-butane and a primary reference fuel with an octane number of 70 (PRF 70) were modeled. A comparison of the pressure and heat release traces of the experimental and computational results shows the difficulties in predicting the heat release in the cool flame region. The behavior of the driving radicals for two-stage ignition is studied and is compared to the behavior for a single-ignition from the literature. Model results show that PRF 70 exhibits more pronounced cool flame heat release than n-butane.
Technical Paper

A Modeling Investigation of Combustion Control Variables During DI-Diesel HCCI Engine Transients

2006-04-03
2006-01-1084
A comprehensive system level modeling approach is used to understand the effects of the various physical actuators during diesel HCCI transients. Control concepts during transient operations are simulated using a set of actuators suitable for combustion control in diesel HCCI engines (intake valve actuation, injection timing, cooled EGR, intake boost pressure and droplet size). The impact of these actuating techniques on the overall engine performance is quantified by investigating the amount of actuation required, timing of actuation and the use of a combination of actuators. Combined actuation improved actuation space that can be used to phase combustion timing better and in extending the operating range. The results from transient simulations indicate that diesel HCCI operation would benefit from the combined actuation of intake valve closure, injection timing, boost and cooled EGR.
Technical Paper

Advanced Super Charge System for Small Engines

1999-09-28
1999-01-3318
The specific output of 4-cycle engines are generally smaller than that of 2-cycle engines. Increasing engine speed is one method to improve the specific output, however, it contains some disadvantages in application. Hence, improvement in torque with the 4-cycle engine is desirable. Although torque could be improved by super-charging, it seems difficult to apply existing systems for small displacement engines due to problems of their size and cost. We have, therefore, newly developed a super-charging system named Advanced Crankcase Super Charge (hereinafter referred to as ACSC) using a crankcase as a supercharger. In this study, we made a 50cc single cylinder prototype engine with ACSC and carried out the engine unit tests and actual running tests on a scooter. From these tests, the torque that is twice as that of the naturally aspirated engine was obtained.
Journal Article

An Experimental Investigation into Diesel Engine Size-Scaling Parameters

2009-04-20
2009-01-1124
With recent increases in global fuel prices there has become a growing interest in expanding the use of diesel engines in the transportation industry. However, new engine development is costly and time intensive, requiring many hours of expensive engine tests. The ability to accurately predict an engine's performance based on existing models would reduce the expense involved in creating a new engine of different size. In the present study experimental results from two single-cylinder direct injection diesel engines were used to examine previously developed engine scaling models. The first scaling model was based on an equal spray penetration correlation. The second model considered both equal spray penetration and flame lift-off length. The engines used were a heavy-duty Caterpillar engine with a 2.44L displacement and a light-duty GM engine with a 0.48L displacement.
Technical Paper

An Experimental Study of Connecting Rod Big Ends

1995-02-01
950202
Connecting rod design factors, such as geometric shape, capscrew torque and materials can significantly affect bore distortion and assembly stress. In this paper, experiments using different materials were conducted on several connecting rod big-ends with various shapes, bosses and bolts. The results show that the distortion of the big-end bore and the bolt stress are influenced considerably by the big-end shape, the bolt axial tension and the material under inertia force. It was also observed that the bolt bending stress and the load separating the big-end joint surface could be calculated with high accuracy using three-dimensional FEM in the initial connecting rod design.
Technical Paper

An Experimental and Numerical Study of Injector Behavior for HSDI Diesel Engines

2003-03-03
2003-01-0705
An experimental and numerical characterization has been conducted for high-pressure hydraulically actuated fuel injection systems. One single and one double-guided multi-hole Valve-Covered-Orifice (VCO) type injector was used with a Common Rail (CR) injection system, and two mini-sac injectors for Hydraulic electronic Unit Injection system (HEUI) were used with different orifice diameters. The purpose of the study was to explore the effects of the injection system and the operating conditions on the engine emissions for a direct injection small bore diesel engine. The diesel spray was injected into a pressurized chamber with optical access at ambient temperature. The gas density inside the chamber was representative of the density in a High Speed Direct Injection (HSDI) diesel engine at the time of injection. The experimental spray parameters included: injection pressure, injection duration, nozzle type, and nozzle diameter.
Technical Paper

An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics

2002-10-21
2002-01-2830
A single cylinder CFR research engine has been run in HCCI combustion mode for a range of temperatures and fuel compositions. The data indicate that the best HCCI operation, as measured by a combination of successful combustion with low ISFC, occurs at or near the rich limit of operation. Analysis of the pressure and heat release histories indicated the presence, or absence, and impact of the fuel's NTC ignition behavior on establishing successful HCCI operation. The auto-ignition trends observed were in complete agreement with previous results found in the literature. Furthermore, analysis of the importance of the fuel's octane sensitivity, through assessment of an octane index, successfully explained the changes in the fuels auto-ignition tendency with changes in engine operating conditions.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

Analysis of Cycle-to-Cycle Variation in a Port Injection Gasoline Engine by Simultaneous Measurement of Time Resolved PIV and PLIF

2020-01-24
2019-32-0552
Cycle-to-cycle variation (CCV) of combustion in low load operation is a factor that may cause various problems in engine operation. Variable valve timing and variable ignition timing are commonly used as a means to reduce this variation. However, due to mountability and cost constraints, these methods are not feasible for use in motorcycle engines. Therefore, development of an engine with minimal CCV without utilizing complicated mechanisms or electronic control is required. CCV of combustion may be caused by fluctuations in in-cylinder flow, air-fuel mixture, temperature, residual gas and ignition energy. In this study, the relationship between CCV of combustion, in-cylinder flow fluctuation and air-fuel mixture fluctuation was the primary focus. In order to evaluate in-cylinder flow fluctuation, Time Resolved Particle Image Velocimetry (TR-PIV) technique was utilized.
Technical Paper

Analysis of Cyclic Variations of Combustion in High Compression Ratio Boosted D.I.S.I. Engine by Ion-Current Probes and CFD

2009-04-20
2009-01-1484
Regarding S.I. gasoline engine, it is one of the most important matters to eliminate cyclic variation of combustion. Especially with high compression ratio and high boosted engine, the difficulties increase more. This paper describes the analysis of combustion process precisely by using many ion-current probes and CFD with the unique approaches. The number of used ion-current probes is 80 and they are mounted on whole combustion chamber wall especially including moving intake and exhaust valve faces. Thus cyclic variations of flame propagation can be measured precisely under high compression ratio and high boosted conditions in a multi-cylinder engine. In addition, CFD combustion simulation is conducted through full four strokes of continuous nine cycles. Moreover air motion and pressure vibration in intake and exhaust manifolds in whole cycles are considered. These unique approaches have made CFD result correspond to the measurement result of cyclic variations of actual combustion.
Technical Paper

Application of Chaos Theory to Engine Systems

2008-09-09
2008-32-0010
We focus on the control issue for engine systems from the perspective of chaos theory, which is based on the fact that engine systems have a low-dimensional chaotic dynamics. Two approaches are discussed: controlling chaos and harnessing chaos, respectively. We apply Pyragas' chaos control method to an actual engine system. The experimental results show that the chaotic motion of an engine system may be stabilized to a periodic motion. Alternatively, harnessing chaos for engine systems is addressed, which regards chaos as an essential dynamic mode for the engine.
Journal Article

Application of Vacuum Assisted Carbide Dispersion Carbonitriding to Connecting Rods

2013-10-15
2013-32-9082
In four-cycle single-cylinder motorcycle engines, high Hertzian stress is generated on and beneath the big-end surface of the connecting rod. If the surface strength would be improved, the diameter of the big-end could be made smaller, making the entire engine smaller and lighter. Therefore, application of carbide dispersion carbonitriding using a vacuum furnace (hereinafter referred to as “vacuum CD carbonitriding”) on the big-end surface was investigated. Vacuum CD carbonitriding was carried out by three processes. The first was a CD carburizing process. This process is done to obtain granular cementite, but in order to avoid decreasing the strength, it is necessary to prevent the formation of coarsened cementite at the grain boundary. The second process was a refining process. This process is done for the purpose of refining the prior austenite grain size. The third process was a carbonitriding process.
Journal Article

Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load

2008-04-14
2008-01-0949
In the present paper optimization tools are used to recommend low-emission engine combustion chamber designs, spray targeting and swirl ratio levels for a heavy-duty diesel engine operated at high-load. The study identifies aspects of the combustion and pollution formation that are affected by mixing processes, and offers guidance for better matching of the piston geometry with the spray plume geometry for enhanced mixing. By coupling a GA (genetic algorithm) with the KIVA-CFD code, and also by utilizing an automated grid generation technique, multi-objective optimizations with goals of low emissions and fuel economy were achieved. Three different multi-objective genetic algorithms including a Micro-Genetic Algorithm (μGA), a Nondominated Sorting Genetic Algorithm II (NSGA II) and an Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) were compared for conducting the optimization under the same conditions.
Technical Paper

Combustion Noise of Two-Stroke Gasoline Engines and its Reduction Techniques

1989-05-01
891125
In order to obtain more reduction of two-stroke motorcycle engine noise than usual, it becomes necessary to make improvements within the combustion process itself. This study was carried out for two objectives. One is the investigation of the relationship between combustion and noise, and the other one is the development of noise reduction techniques. As the result, it was discovered that there was a significant correlation between engine noise and (dP/dθ)max, called the maximum rate of cylinder pressure rise. Therefore, the reduction of the (dP/dθ) max was recognized to be effective for engine noise reduction. The optimized alteration of combustion chamber shape is the most effective noise reduction technique, because it is able to reduce (dP/dθ) max without any sacrifice of engine power. In fact, the level of noise reduction can be predicted by one of the parameters obtained from the combustion chamber shape.
Technical Paper

Cycle Simulation Diesel HCCI Modeling Studies and Control

2004-10-25
2004-01-2997
An integrated system based modeling approach has been developed to understand early Direct Injection (DI) Diesel Homogeneous Charge Compression Ignition (HCCI) process. GT-Power, a commercial one-dimensional (1-D) engine cycle code has been coupled with an external cylinder model which incorporates sub-models for fuel injection, vaporization, detailed chemistry calculations (Chemkin), heat transfer, energy conservation and species conservation. In order to improve the modeling accuracy, a multi-zone model has been implemented to account for temperature and fuel stratifications in the cylinder charge. The predictions from the coupled simulation have been compared with experimental data from a single cylinder Caterpillar truck engine modified for Diesel HCCI operation. A parametric study is conducted to examine the effect of combustion timing on four major control parameters. Overall the results show good agreement of the trends between the experiments and model predictions.
Technical Paper

Development of Fracture Splitting Method for Case Hardened Connecting Rods

2004-09-27
2004-32-0064
The fracture splitting (FS) method for case hardened connecting rods has been developed to improve engine performance while decreasing production costs. The FS method is widely used for automotive connecting rods because it effectively improves their productivity. Normalized forging steels, microalloyed forging steels and powder metals have generally been used as the material in the FS method as they are easily split due to their brittleness. On the other hand, the materials to be used for high performance motorcycles are case hardened low carbon steels because they allow the connecting rods to be lightweight due to their high fatigue strengths. These materials, which have a hardened area of approx. 0.5mm in depth from the surface, have a ductile texture inside. This texture obstructs the crack propagation and makes the split force too high to split without deforming the bearing area.
Journal Article

Development of Fracture-Split Connecting Rods Made of Titanium Alloy for Use on Supersport Motorcycles

2015-11-17
2015-32-0830
A connecting rod made of titanium alloy is effective for lower fuel consumption and higher power output comparing to a steel one because the titanium connecting rod enables to reduce the weight of both of reciprocating and rotating parts in an entire engine substantially. But up to now, it has been adopted only to expensive and small-lot production models because a material cost is high, a processing is difficult and a wear on a sliding area should be prevented. In order to adopt the titanium connecting rods into a more types of motorcycles, appropriate materials, processing methods and surface treatment were considered. Hot forging process was applied not only to reduce a machining volume but also to enhance a material strength and stiffness. And the fracture-splitting (FS) method for the big-end of the titanium connecting rod was put into a practical use.
Technical Paper

Development of Lightweight Oil Catch Tank Produced by Laser Powder Bed Fusion

2023-10-24
2023-01-1807
Laser powder bed fusion is one of the metal additive manufacturing technologies, so-called 3D printing. It has attracted great attentions due to high geometrical flexibility and remarkable metallurgical characteristics. An oil catch tank has been widely used in automotive industries for filtering oil vapors or carbon sludge from blow-by gas as a conventional usage. A pneumatic valve system mainly adopted to high-performance engines is also a potential application of it because undesirable oil infiltrates into air springs during engine operation, resulting in an excess spring pressure. This work focused on developing a lightweight oil catch tank which can be applied to a pneumatic valve system by taking advantage of additive manufacturing techniques. Al-Mg-Sc alloy powder with high tensile strength as well as high ductility were used under the consideration of specific strength, printability and availability.
X