Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

A Design Study to Determine the Impact of Various Parameters on Door Acoustics

2003-05-05
2003-01-1430
Once the design of a door sheetmetal and accessories is confirmed, the acoustics of the door system depends on the sound package assembly. This essentially consists of a watershield which acts as a barrier and a porous material which acts as an absorber. The acoustical performance of the watershield and the reverberant sound build-up in the door cavity control the performance. This paper discusses the findings of a design study that was developed based on design of experiments (DOE) concepts to determine which parameters of the door sound package assembly are important to the door acoustics. The study was based on conducting a minimum number of tests on a five factor - two level design that covered over 16 different design configurations. In addition, other measurements were made that aided in developing a SEA model which is also compared with the findings of the results of the design study.
Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

A Java Implementation of Future Automotive Systems Technology Simulator (FASTSim) Fuel Economy Simulation Code Modules

2018-04-03
2018-01-0412
Future Automotive Systems Technology Simulator (FASTSim) is a free and open-source tool developed by National Renewable Energy Lab (NREL). Among the attractive capabilities of the FASTSim is that it can perform computationally efficient fuel economy simulations of automotive vehicles with reasonable accuracy for standard or arbitrary drive cycles. The modeling capability includes vehicles with various types of powertrains such as: conventional vehicles (CVs), hybrid-electric vehicles (HEVs), plugin hybrid electric vehicles (PHEVs) and battery-only electric vehicles (BEVs). The public version of FASTSim available from NREL is implemented in Excel, which achieves the goal of good accessibility to a broad audience, but has some limitations, including: i) bottleneck in computations when importing arbitrary drive cycles, ii) slower computations in general than other scripting or programming languages, and iii) less portable to integration with other applications and/or other platforms.
Technical Paper

A New Material Recycling Technology for Automobile Rubber Waste

2003-10-27
2003-01-2775
A new material recycling technology for crosslinked rubber was developed using the continuous reactive processing method. In this process of producing reclaimed rubber, breakage of crosslinking points in the crosslinked rubber occurs selectively under the controls of shear stress, reaction temperature, and internal pressure in a modular screw type reactor. Deodorization during the process has also become possible by a newly developed method. The reclaimed rubber obtained from rubber waste generated from both automobile manufacturing products and post-consumer products shows excellent mechanical properties applicable to new rubber compounds. Furthermore, an enhanced rubber recycling process for producing thermoplastic elastomer (TPE) based on rubber waste has been established. The obtained TPE exhibits highly recoverable rubber elasticity and mechanical properties comparable to commercial TPE.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

A SEA-Based Optimizing Approach for Sound Package Design

2003-05-05
2003-01-1556
Statistical Energy Analysis (SEA) is a promising tool for developing an efficient sound package design for reducing airborne interior noise at high frequencies. The optimal sound package, however, is not directly predicted by using the SEA vehicle model alone and therefore requires parametric studies of sound package configurations. This paper describes an effective method for using SEA modeling to achieve the desired interior noise level targets. A mathematical model, expressed by one equation, is derived on the assumption that the directions of the power flows are known in the SEA model. This equation describes the relationship between sound package properties and the resulting interior noise level. Using the relationship between weight and performance of sound package, an efficient configuration can be determined. The predicted sound pressure level of the vehicle interior with the optimized sound package correlated well to the experimental data for the case presented in this paper.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

A Study of Reduction for Brake Squeal in Disc In-Plane Mode

2012-09-17
2012-01-1825
Brake squeal is a phenomenon of self-induced vibration of the brake components during braking. There are many kinds of brake squeal cases whose mechanisms require acting on a various number of potential root causes. Brake squeal phenomena can be generally separated into 2 main mode types related to the direction of disc vibration involved: in-plane mode and out-of-plane mode. For out-of-plane mode, a number of existing countermeasures can be potentially applied after characterization of the squeal occurrence condition by direct experiment or simulation analysis[1,2,3,4]. However, as there are many possible mechanisms and root causes for the in-plane modes[5,6,7,8,9,10,11,12,13], it is generally necessary to perform a detailed analysis of the vibration mechanism before implementing a countermeasure.
Technical Paper

A Study of Triple Skyhook Control for Semi-Active Suspension System

2019-04-02
2019-01-0168
The research described in this paper focused on improving occupant ride comfort and road holding by suppressing sprung and unsprung vibration using a semi-active suspension system. It has been reported that occupants tend to perceive vertical vibrations in a frequency range between 4 and 8 Hz as uncomfortable (described below as the “mid-frequency range”). Previous research into semi-active suspension system has focused on reducing vibration in this mid-frequency range, as well as close to the sprung resonance frequency of between 1 and 2 Hz. Skyhook damper (SH) control is a typical ride comfort control used to damp vibration close to the sprung resonance frequency. However, since SH control is not capable of damping vibration in the mid-frequency range, the shock absorbers are configured with a lower damping factor. This helps to achieve a good balance between reducing vibration close to the sprung mass resonance and in the mid-frequency range.
Technical Paper

A Study of Vibration Characteristics on Final Gear Unit

1990-02-01
900393
Whinning gear noise(final gear noise), one of the causes for automobile interior noise is due to the exciting force of final gear kit and as a general countermeasure for this problem, a reduction of resonance level in transfer system and better meshing of gears have been utilized. However,vibration characteristics of final gear unit have not been considered much in this case. Authors have executed impacting test on final gear unit and confirmed its vibration characteristics. Based on this fact,vibration model consisting of bearings and gears spring system was constructed to evaluate vibration characteristics of final gear unit along with the results obtained from final gear unit of front engine,rear drive passenger car.
Technical Paper

A Study on Energy-Absorbing Mechanism of Plastic Ribs

1998-09-29
982346
This paper describes development of a numerical simulation method for the FMVSS 201 testing. This method considers not only deformation but also fracture of plastic materials. a simplified calculation method for predicting the load during impact of absorbing plastic materials was introduced from the numerical simulation results. By applying this simplified calculator method trial and error in development would be reduced.
Technical Paper

A Study on Vehicle Elastomer Mount Preloading and Impact Response with Test Validation

2005-04-11
2005-01-1415
A variety of elastomer mounts are being used for vehicles as isolators/dampers between body and frame, on the engine cradle, etc. These vehicle flexible mounts, made of mainly rubber materials and housed in a metallic tube, are indispensable components affecting the quality of the vehicle ride, noise and vibration. In the auto industry, the usual practice when designing vehicle flexible mounts is to minimally reflect impact considerations in the mount design features. However, in most high-speed vehicle crash events where the mounts fail, the crash responses, including occupant injury severity, are known to be very different from the responses of non-failure cases. Even in low-speed vehicle impact cases, excessive deformation of the flexible mounts could cause significant variance in the compliance of the vehicle acceleration level to the air-bag firing and timing threshold requirements.
Technical Paper

A Target Cascading Method Using Model Based Simulation in Early Stage of Vehicle Development

2019-04-02
2019-01-0836
In the early stages of vehicle development, it is important for decision makers to understand a feasible constraint region that satisfies all system level requirements. The purpose of this paper is to propose a target cascading method to solve for a feasible design region which satisfies all constraints of the system based on model based simulation. In this method, the feasible design region is explored by using both global optimization methods and active learning techniques. In optimization problems, the inverse problem for understanding feasibility for specific designs is defined and solved. To determine the objective functions of the inverse problem, an index representing the achievement level of constraints from system requirements is introduced. To predict feasible regions in the specific design space, a surrogate model of minimized values of the index is trained by using a kriging model.
Technical Paper

AWD Driveline Isolation In SUV Vehicle

2005-05-16
2005-01-2287
The popularity of AWD passenger vehicles presents a challenge to provide car-like drive-train NVH within a relatively small package space. This paper describes a drive-train NVH case study in which analysis and test were used, in conjunction, to solve an NVH problem. Also, it details a systematic process of using the analytical model to identify and resolve similar problems. The particular problem for this case study is a noise and vibration issue occurring at 75 MPH primarily in the middle seat of an all-wheel drive vehicle. Tests indicated that it may be due to propeller shaft imbalance. Analysis results showed good correlation with the tests for that loading condition. Several solutions were identified, which were confirmed by both test and analysis. The most cost-effective of these solutions was implemented.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Advancing the State of Strong Hybrid Technology

2006-10-16
2006-21-0058
As the hybrid automotive market becomes quickly saturated with highly competitive products and vehicles, auto manufacturers struggle with business models and the combination of current manufacturing with next generation development. The hybrid development cooperation amongst General Motors, DaimlerChrysler, and BMW offers a new business model that promotes the advancement of the state of strong hybrid technology while maintaining the strong global leadership and competition.
Technical Paper

Analysis of Degradation Mechanism of Lead-Free Materials

2009-04-20
2009-01-0260
The use of lead-free (Pb-free) solder and plating in onboard electronic components has accelerated rapidly in recent years, but solutions have yet to be found for the issues of whisker generation in tin (Sn) plating and crack initiation in Pb-free solder, despite widespread research efforts. Analysis of the whisker generation mechanism has focused on internal energy levels and crystal orientation, and analysis of the crack initiation mechanism in Pb-free solder has examined changes in the grain boundaries of Sn crystals.
X