Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Overview of Microalloyed Steels, Part I: Metallurgical Aspects

1996-02-01
960308
Microalloyed (MA) steels have been developed as one of the most significant metallurgical advances over the last thirty years, with their property improvement and cost effectiveness characteristics. Even though the underlying principles for microstructural property control of these steels have been well established, applications of these steels are still limited in scale mainly due to a lack of their understanding. This review paper focuses on mechanical property control of these steels. Since the properties depend mainly on the composition and microstructure which in turn are controlled by steel making and processing, metallurgical variables are reviewed in this first part of the review. These include their strengthening mechanisms, effects of composition and processing on their behavior, and the various MA steel microstructures.
Technical Paper

An Overview of Microalloyed Steels, Part II: Their Mechanical Behavior

1996-02-01
960309
Microalloyed (MA) steels have been developed as economical alternatives to the traditional quenched and tempered (QT) steels. The physical metallurgy principles underlying their basic composition-processing-microstructure-property interrelationships have been reviewed in the first part of the review. In this second part of the review, mechanical properties as well as fabrication properties, such as mahinability, weldability, and formability, are discussed. Flat products (such as strips, sheets, and plates), long products (including bars, rods, sections/profiles), and forging articles made of MA steels are investigated. Since most engineering components made of these steels are subjected to cyclic loading, fatigue and fracture performance of MA steels and their comparison with the QT steels are also evaluated in this review.
Journal Article

Effect of Water Absorption on Tensile and Fatigue Behaviors of Two Short Glass Fiber Reinforced Thermoplastics

2015-04-14
2015-01-0546
An experimental study was conducted to evaluate the effect of water absorption on tensile and fatigue behaviors of an impact-modified short glass fiber polyamide-6 and a short glass fiber polybutylene terephthalate. Specimens were prepared in the longitudinal and transverse directions with respect to the injection mold flow direction and immersed in water. Kinetics of water absorption was studied and found to follow the Fick's law. Tensile tests were performed at room temperature with specimens in the longitudinal and transverse directions and with various degrees of water absorption. Mathematical relations were developed to represent tensile properties as a function of water content. Load-controlled tension-tension fatigue tests were conducted in both longitudinal and transverse directions and correlations between tensile and fatigue strengths were obtained. Specimen fracture surfaces were also microscopically studied and mechanisms of tensile and fatigue failures were identified.
Journal Article

Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 4140 Steel

2008-04-14
2008-01-0434
During metal forming processes such as rolling and forging, deformable manganese sulfide (MnS) inclusions become elongated. Such elongated MnS inclusions can have considerable adverse effects on mechanical properties, if the inclusions are not aligned with the loading direction. The objectives of this study were to evaluate and compare fatigue, monotonic tensile and CVN impact behavior of SAE 4140 steel with high (0.077% S), low (0.012% S) and ultra low (0.004% S) sulfur contents at two hardness levels (40 HRC and 50 HRC). The longitudinally oriented samples at 40 HRC, where MnS inclusions were oriented along the loading direction, did not exhibit any significant sensitivity of tensile or fatigue properties to the sulfur content. For the transversely oriented MnS inclusions, however, the monotonic tensile test results indicate very low ductility of the high sulfur material at both hardness levels, where specimens failed shortly after yielding.
Journal Article

Fatigue Behavior of Neat and Short Glass Fiber Reinforced Polymers under Two-Step Loadings and Periodic Overloads

2016-04-05
2016-01-0373
An experimental study was conducted to evaluate the variable amplitude fatigue behavior of a neat polymer (polypropylene impact co-polymer) and a polymer composite made of polybutylene terephthalate (PBT) with 30 wt% short glass fibers. Fatigue tests were conducted on un-notched and notched specimens at room temperatures. Plate-type specimens were prepared in the transverse direction with respect to the injection mold flow direction and a circular hole was drilled in the center of notched specimens. Two-step loadings (high-low and low-high) tests at two damage ratio of 0.2 and 0.5 at stress ratios of R = 0.1 and -1 were conducted to investigate load sequence effects and prediction accuracy of the linear damage rule. Different behaviors were observed for unreinforced and short glass fiber reinforced polymers under the two-step loading tests.
Technical Paper

Tensile and Fatigue Behaviors of Two Thermoplastics Including Strain Rate, Temperature, and Mean Stress Effects

2014-04-01
2014-01-0901
An experimental investigation was conducted to evaluate tensile and fatigue behaviors of two thermoplastics, a neat impact polypropylene and a mineral and elastomer reinforced polyolefin. Tensile tests were performed at various strain rates at room, −40°C, and 85°C temperatures with specimens cut parallel and perpendicular to the mold flow direction. Tensile properties were determined from these tests and mathematical relations were developed to represent tensile properties as a function of strain rate and temperature. For fatigue behavior, the effects considered include mold flow direction, mean stress, and temperature. Tension-compression as well as tension-tension load-controlled fatigue tests were performed at room temperature, −40°C and 85°C. The effect of mean stress was modeled using the Walker mean stress model and a simple model with a mean stress sensitivity factor.
X