Refine Your Search

null

Search Results

Viewing 1 to 11 of 11
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Effect of Biodiesel (B20) on Vehicle-Aged Engine Oil Properties

2010-10-25
2010-01-2103
High concentrations of diesel fuel can accumulate in the engine oil, especially in vehicles equipped with diesel particle filters. Fuel dilution can decrease the viscosity of engine oil, reducing its film thickness. Higher concentrations of fuel are believed to accumulate in oil with biodiesel than with diesel fuel because biodiesel has a higher boiling temperature range, allowing it to persist in the sump. Numerous countries are taking actions to promote the use of biodiesel. The growing interest for biodiesel has been driven by a desire for energy independence (domestically produced), the increasing cost of petroleum-derived fuels, and an interest in reducing greenhouse gas emissions. Biodiesel can affect engine lubrication (through fuel dilution), as its physical and chemical properties are significantly different from those of petrodiesel. Many risks associated with excessive biodiesel dilution have been identified, yet its actual impact has not been well quantified.
Technical Paper

Engine Friction and Wear Performances with Polyalkylene Glycol Engine Oils

2016-10-17
2016-01-2271
The application of polyalkylene glycol (PAG) as a base stock for engine oil formulation has been explored for substantial fuel economy gain over traditional formulations with mineral oils. Various PAG chemistries were explored depending on feed stock material used for manufacturing. All formulations except one have the same additive package. The friction performance of these oils was evaluated in a motored single cylinder engine with current production engine hardware in the temperature range 40°C-120°C and in the speed range of 500 RPM-2500 RPM. PAG formulations showed up to 50% friction reduction over GF-5 SAE 5W-20 oil depending on temperature, speed, and oil chemistry. Friction evaluation in a motored I-4 engine showed up to 11% friction reduction in the temperature range 40°C-100°C over GF-5 oil. The paper will share results on ASTM Sequence VID fuel economy, Sequence IVA wear, and Sequence VG sludge and varnish tests. Chassis roll fuel economy data will also be shared.
Technical Paper

Friction Reduction in Lubricated Components Through Engine Oil Formulation

1998-10-19
982640
Improvement of engine fuel efficiency through the use of low friction engine oils is a major task in engine lubrication research. This friction reduction can be achieved by improving the rheological characteristics and elastohydrodynamic (EHD) properties of engine oils, and by controlling boundary chemical interactions between oil-based additives and lubricated components in the engine. In order to achieve minimal frictional power loss under all lubrication regimes, engine tribological systems must be designed to effectively use advanced lubricant technology, material and surface modifications. This paper presents results of cooperative research addressing opportunities for minimizing friction through extension of hydrodynamic lubrication regime in lubricated components using various formulation approaches. A set of experimental oils has been evaluated using laboratory test rigs that simulate hydrodynamic, EHD, mixed and boundary lubrication.
Technical Paper

Fuel Economy Improvement Through Frictional Loss Reduction in Light Duty Truck Rear Axle

2002-10-21
2002-01-2821
In an effort to improve fuel economy for light duty trucks, an initiative was undertaken to reduce frictional losses in rear axle through use of low friction lubricants and novel surface finish on gears while maintaining durability. This paper describes the effect of rear axle lubricants on fuel economy. A laboratory rig was set up using a full size pick-up truck rear axle to measure axle efficiency and lubricant temperature with various SAE 75W-90 and SAE 75W-140 viscosity grade lubricants. Traction coefficients of lubricants were also measured at various temperatures using a laboratory ball and disk contact geometry. An improvement in axle efficiency up to 4.3% was observed over current Ford factory fill SAE 75W-140 lubricant depending on speed, torque and the type of lubricant used. The temperature of the lubricants was also lower than that with the current factory fill. This is important for maintaining bearing life and overall durability of the rear axle.
Journal Article

Methodology for Predictive Friction Modeling in Direct-Acting Mechanical Bucket Valvetrain System

2015-04-14
2015-01-0677
Valvetrain friction can represent a substantial portion of overall engine friction, especially at low operating speed. This paper describes the methodology for predictive modeling of frictional losses in the direct-acting mechanical bucket tappet-type valvetrain. The proposed modeling technique combines advanced mathematical models based on established theories of Hertzian contact, hydrodynamic and elastohydrodynamic lubrication (EHL), asperity contact of rough surfaces, flash temperature, and lubricant rheology with detailed measurements of lubricant properties and surface finish, driven by a detailed analysis of valvetrain system kinematics and dynamics. The contributions of individual friction components to the overall valvetrain frictional loss were identified and quantified. Calculated valvetrain friction was validated against motored valvetrain friction torque measurements on two engines.
Technical Paper

Ranking of Lubricants for Flexible Fuel Vehicles (FFV) by a Short Engine Sequence Test

1993-10-01
932790
A short engine sequence test, based on the Sequence VD procedure, was used to screen FFV oil candidates more rapidly. Since only one engine is needed to compare the wear-protection performance of several lubricants, engine hardware variability is not a significant issue in this test procedure. Several lubricants, some specially formulated for FFV engines, were tested using standard Sequence VD engine hardware which includes molybdenum top piston-rings. Results showed clear discrimination of the performance of oil candidates. These lubricants were also tested using an engine with chromium-faced top rings and exhibited similar performance ranking.
Technical Paper

Rheological Characterization of Lubricant-Methanol-Water Emulsions

1992-10-01
922283
Rheological measurements were performed on a series of lubricants for flexible fuel vehicles, and blends of water or methanol in these oils. A series of measurements, including kinematic viscosity, viscosity at low and high shear rates, low shear viscosity under borderline pumping conditions, and density were performed on all oils and blends. The effects of mixing conditions, such as mixing speed and temperature on these properties were also studied. Viscosity increases when water emulsifies in oils. Methanol exhibits limited solubility in all oils, but more so in synthetic base oils. Viscosity tests at 248 K (-25°C) do not indicate the onset of critical pumping conditions, even at high concentrations of water or methanol. Tests at high shear rates at 323 K (50°C) suggest that water-oil emulsions are quite stable, while methanol-oil blends lose their methanol content either due to evaporation or shear-induced separation.
Technical Paper

The Effect of Friction Modifiers and DI Package on Friction Reduction Potential of Next Generation Engine Oils: Part I Fresh Oils

2018-04-03
2018-01-0933
Friction reduction in lubricated components through engine oil formulations has been investigated in the present work. Three different DI packages in combination with one friction modifier were blended in SAE 5 W-20 and SAE 0 W-16 viscosity grades. The friction performance of these oils was compared with GF-5 SAE 5 W-20 oil. A motored cranktrain assembly has been used to evaluate these, in which friction mean effective pressure (FMEP) as a function of engine speeds at different lubricant temperatures is measured. Results show that the choice of DI package plays a significant role in friction reduction. Results obtained from the mini-traction machine (MTM2) provide detailed information on traction coefficient in boundary, mixed and elastohydrodynamic (EHD) lubrication regimes. It has been shown that the results from the cranktrain rig are fairly consistent with those found in MTM2 tests for all the lubricants tested.
Technical Paper

Viscosity Prediction for Multigrade Oils

1993-10-01
932833
The variation of viscosity with temperature and shear rate plays an important role in the analysis of lubrication of automotive systems. In this paper, a method for predicting the viscosity of non-Newtonian fluids, such as multigrade engine oils, over a wide range of temperatures and shear rates is outlined. This expression determines viscosity parameters for shear thinning fluids in terms of easily measured viscosity values at some reference state. A comparison of predictions with experimental data suggests that viscosity for multigrade engine oils can be predicted to within experimental uncertainty. The proposed method can be used in assessing lubricant viscosity at shear rates greater than 106 s-1, which are beyond the capability of current laboratory instruments. A comparative study with multigrade oils shows that performance at very high shear rates cannot be accurately gauged from high temperature, high shear (HTHS) viscosity measurements.
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
X