Refine Your Search

Topic

Search Results

Technical Paper

2-Stroke Diesel Engine for Light Aircraft: IDI vs. DI Combustion Systems

2010-10-25
2010-01-2147
The paper presents a numerical study aimed at converting a commercial lightweight 2-Stroke Indirect Injection (IDI) Diesel aircraft engine to Direct Injection(DI). First, a CFD-1D model of the IDI engine was built and calibrated against experiments at the dynamometer bench. This model is the baseline for the comparison between the IDI and the DI combustion systems. The DI chamber design was supported by extensive 3D-CFD simulations, using a customized version of the KIVA-3V code. Once a satisfactory combustion system was identified, its heat release and wall transfer patterns were entered in the CFD-1D model, and a comparison between the IDI and the DI engine was performed, considering the same Air-Fuel Ratio limit. It was found that the DI combustion system yields several advantages: better take-off performance (higher power output), lower fuel consumption at cruise conditions, improved altitude performance, reduced cooling requirements.
Technical Paper

2-Stroke Externally Scavenged Engines for Range Extender Applications

2012-04-16
2012-01-1022
In this work, the authors assess the potential of the 2-stroke concept applied to Range Extender engines, proposing 3 different configurations: 1) Supercharged, Compression Ignition; 2) Turbocharged, Compression Ignition; 3) Supercharged, Gasoline Direct Injection. All the engines feature a single power cylinder of 0.49l, external air feed by piston pump and an innovative induction system. The scavenging is of the Loop type, without poppet valves, and with a 4-stroke like lubrication system (no crankcase pump). Engine design has been supported by CFD simulations, both 1D (engine cycle analysis) and 3D (scavenging, injection and combustion calculations). All the numerical models used in the study are calibrated against experiments, carried out on engines as similar as possible to the proposed ones.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Technical Paper

A 3D-CFD Numerical Approach for Combustion Simulations of Spark Ignition Engines Fuelled with Hydrogen: A Preliminary Analysis

2023-04-11
2023-01-0207
With growing concern about global warming, alternatives to fossil fuels in internal combustion engines are searched. In this context, hydrogen is one of the most interesting fuels as it shows excellent combustion properties such as laminar flame speed and energy density. In this work a CFD methodology for 3D-CFD in-cylinder simulations of engine combustion is proposed and its predictive capabilities are validated against test-bench data from a direct injection spark-ignition (DISI) prototype. The original engine is a naturally aspirated, single cylinder compression ignition (Diesel fueled) unit. It is modified substituting the Diesel injector with a spark plug, adding two direct gas injectors, and lowering the compression ratio to run with hydrogen fuel. A 3D-CFD model is built, embedding in-house developed ignition and heat transfer models besides G-equation one for combustion.
Technical Paper

A Comparison between Different Moving Grid Techniques for the Analysis of the TCC Engine under Motored Conditions

2019-04-02
2019-01-0218
The accurate representation of Internal Combustion Engine (ICE) flows via CFD is an extremely complex task: it strongly depends on a combination of highly impacting factors, such as grid resolution (both local and global), choice of the turbulence model, numeric schemes and mesh motion technique. A well-founded choice must be made in order to avoid excessive computational cost and numerical difficulties arising from the combination of fine computational grids, high-order numeric schemes and geometrical complexity typical of ICEs. The paper focuses on the comparison between different mesh motion technologies, namely layer addition and removal, morphing/remapping and overset grids. Different grid strategies for a chosen mesh motion technology are also discussed. The performance of each mesh technology and grid strategy is evaluated in terms of accuracy and computational efficiency (stability, scalability, robustness).
Technical Paper

A Comprehensive CFD-CHT Methodology for the Characterization of a Diesel Engine: from the Heat Transfer Prediction to the Thermal Field Evaluation

2017-10-08
2017-01-2196
High power-density Diesel engines are characterized by remarkable thermo-mechanical loads. Therefore, compared to spark ignition engines, designers are forced to increase component strength in order to avoid failures. 3D-CFD simulations represent a powerful tool for the evaluation of the engine thermal field and may be used by designers, along with FE analyses, to ensure thermo-mechanical reliability. The present work aims at providing an integrated in-cylinder/CHT methodology for the estimation of a Diesel engine thermal field. On one hand, in-cylinder simulations are fundamental to evaluate not only the integral amount of heat transfer to the combustion chamber walls, but also its point-wise distribution. To this specific aim, an improved heat transfer model based on a modified thermal wall function is adopted to estimate correctly wall heat fluxes due to combustion.
Technical Paper

A Numerical Investigation on the Potentials of Water Injection as a Fuel Efficiency Enhancer in Highly Downsized GDI Engines

2015-04-14
2015-01-0393
Engine downsizing is gaining popularity in the high performance engine market sector, where a new generation of highly downsized engines with specific power outputs around or above 150 HP/litre is emerging. High-boost and downsizing, adopted to increase power density and reduce fuel consumption, have to face the increased risks of pre-ignition, knock or mega-knock. To counterbalance autoignition of fuel/air mixture, such engines usually operate with high fuel enrichments and delayed (sometimes negative) spark advances. The former is responsible for high fuel consumption levels, while the latter reduces performance and induces an even lower A/F ratio (below 11), to limit the turbine inlet temperature, with huge negative effects on BSFC.
Technical Paper

An Analytical Assessment of the CO2 Emissions Benefit of Two-Stroke Diesel Engines

2016-04-05
2016-01-0659
Two-stroke diesel engines could be a promising solution for reducing carbon dioxide (CO2) emissions from light-duty vehicles. The main objective of this study was to assess the potential of two-stroke engines in achieving a substantial reduction in CO2 emissions compared to four-stroke diesel baselines. As part of this study 1-D models were developed for loop scavenged two-stroke and opposed piston two-stroke diesel engine concepts. Based on the engine models and an in-house vehicle model, projections were made for the CO2 emissions for a representative light-duty vehicle over the New European Driving Cycle and the Worldwide Harmonized Light Vehicles Test Procedure. The loop scavenged two-stroke engine had about 5-6% lower CO2 emissions over the two driving cycles compared to a state of the art four-stroke diesel engine, while the opposed piston diesel engine had about 13-15% potential benefit.
Technical Paper

An Innovative Hybrid Powertrain for Small and Medium Boats

2018-04-03
2018-01-0373
Hybridization is a mainstream technology for automobiles, and its application is rapidly expanding in other fields. Marine propulsion is one such field that could benefit from electrification of the powertrain. In particular, for boats to sail in enclosed waterways, such as harbors, channels, lagoons, a pure electric mode would be highly desirable. The main challenge to accomplish hybridization is the additional weight of the electric components, in particular the batteries. The goal of this project is to replace a conventional 4-stroke turbocharged Diesel engine with a hybrid powertrain, without any penalty in terms of weight, overall dimensions, fuel efficiency, and pollutant emissions. This can be achieved by developing a new generation of 2-Stroke Diesel engines, and coupling them to a state-of-the art electric system. For the thermal units, two alternative designs without active valve train are considered: opposed piston and loop scavenged engines.
Journal Article

CFD Analyses on 2-Stroke High Speed Diesel Engines

2011-09-11
2011-24-0016
In recent years, interest has been growing in the 2-Stroke Diesel cycle, coupled to high speed engines. One of the most promising applications is on light aircraft piston engines, typically designed to provide a top brake power of 100-200 HP with a relatively low weight. The main advantage yielded by the 2-Stroke cycle is the possibility to achieve high power density at low crankshaft speed, allowing the propeller to be directly coupled to the engine, without a reduction drive. Furthermore, Diesel combustion is a good match for supercharging and it is expected to provide a superior fuel efficiency, in comparison to S.I. engines. However, the coupling of 2-Stroke cycle and Diesel combustion on small bore, high speed engines is quite complex, requiring a suitable support from CFD simulation.
Technical Paper

CFD Analysis and Knock Prediction into Crevices of Piston to Liner Fireland of an High Performance ICE

2019-09-09
2019-24-0006
The paper aims at defining a methodology for the prediction and understanding of knock tendency in internal combustion engine piston crevices by means of CFD simulations. The motivation for the analysis comes from a real design requirement which appeared during the development of a new high performance SI unit: it is in fact widely known that, in high performance engines (especially the turbocharged ones), the high values of pressure and temperature inside the combustion chamber during the engine cycle may cause knocking phenomena. “Standard” knock can be easily recognized by direct observation of the in-cylinder measured pressure trace; it is then possible to undertake proper actions and implement design and control improvements to prevent it with relatively standard 3D-CFD analyses.
Technical Paper

CFD Simulations and Potential of Nanofluids for PEM Fuel Cells Cooling

2023-08-28
2023-24-0144
Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are undergoing a rapid development, due to the ever-growing interest towards their use to decarbonize power generation applications. In the transportation sector, a key technological challenge is their thermal management, i.e. the ability to preserve the membrane at the optimal thermal state to maximize the generated power. This corresponds to a narrow temperature range of 75-80°C, possibly uniformly distributed over the entire active surface. The achievement of such a requirement is complicated by the generation of thermal power, the limited exchange area for radiators, and the poor heat transfer performance of conventional coolants (e.g., ethylene glycol). The interconnection of thermal/fluid/electrochemical processes in PEMFCs renders heat rejection as a potential performance limiter, suggesting its maximization for power density increase.
Technical Paper

CFD parametric analysis of the combustion chamber shape in a small HSDI Diesel engine

2005-10-12
2005-32-0094
The paper aims at providing information about the influence of the combustion chamber shape on the combustion process evolution in a high speed direct injection (HSDI) small unit displacement engine for off-highway applications. Small HSDI Diesel engines require a deep optimisation process in order to maximize specific power output, while limiting pollutant emissions without additional expensive pollutant aftertreatment equipments. Making reference to a current production engine, the purpose of this paper is to investigate the influence of combustion chamber design on both engine performances and combustion efficiency. The actual piston omega-shape is progressively distorted in order to assess the influence of some of the main bowl-features on both mean-flow evolution, mixture formation and pollutants.
Technical Paper

Chemistry-Based Laminar Flame Speed Correlations for a Wide Range of Engine Conditions for Iso-Octane, n-Heptane, Toluene and Gasoline Surrogate Fuels

2017-10-08
2017-01-2190
CFD simulations of reacting flows are fundamental investigation tools used to predict combustion behaviour and pollutants formation in modern internal combustion engines. Focusing on spark-ignited units, most of the flamelet-based combustion models adopted in current simulations use the fuel/air/residual laminar flame propagation speed as a background to predict the turbulent flame speed. This, in turn, is a fundamental requirement to model the effective burn rate. A consolidated approach in engine combustion simulations relies on the adoption of empirical correlations for laminar flame speed, which are derived from fitting of combustion experiments. However, these last are conducted at pressure and temperature ranges largely different from those encountered in engines: for this reason, correlation extrapolation at engine conditions is inevitably accepted. As a consequence, relevant differences between proposed correlations emerge even for the same fuel and conditions.
Technical Paper

Combustion Analysis on an IDI CI Engine Fueled by Microalgae

2015-09-06
2015-24-2484
The third generation of biodiesels, derived from microalgae, is one of the most interesting options for the replacement of fossil fuels. While the use of first generation biodiesels on different types of compression ignition engines is well documented in the open literature, much less information is available on algal fuels. As a matter of fact, the influence on combustion and pollutant emissions is not definitively assessed, depending on the combination of the specific features of both fuel and engine. The aim of this paper is to analyze the combustion process in a small industrial engine fueled by an algal Biodiesel, blended with standard Diesel fuel. The blend composition is the one typically used in most applications, i.e. 20% of biodiesel and 80% of Diesel (B20).
Technical Paper

Combustion Optimization of a Marine DI Diesel Engine

2013-09-08
2013-24-0020
Enhanced calibration strategies and innovative engine combustion technologies are required to meet the new limits on exhaust gas emissions enforced in the field of marine propulsion and on-board energy production. The goal of the paper is to optimize the control parameters of a 4.2 dm3 unit displacement marine DI Diesel engine, in order to enhance the efficiency of the combustion system and reduce engine out emissions. The investigation is carried out by means of experimental tests and CFD simulations. For a better control of the testing conditions, the experimental activity is performed on a single cylinder prototype, while the engine test bench is specifically designed to simulate different levels of boosting. The numerical investigations are carried out using a set of different CFD tools: GT-Power for the engine cycle analysis, STAR-CD for the study of the in-cylinder flow, and a customized version of the KIVA-3V code for combustion.
Technical Paper

Commercial Vehicles: New Diesel Engine Concepts for Euro VI and Beyond

2017-01-10
2017-26-0034
The paper presents a numerical investigation, aimed to explore the potential of 2-stroke Diesel engines, able to meet Euro VI requirements, for application to medium size commercial vehicles (power rate: 80 kW at 2600 rpm, max. torque 420 Nm from 1200 to 1400 rpm). The study is based on experimental performance of a highly developed 4-stroke engine. Two different designs are considered: Loop and Uniflow scavenging, the latter obtained through an opposed piston configuration. In both cases, no poppet valves are used, and the lubrication is provided by a 4-stroke-like oil sump. The study started with the development of a 4-stroke EURO VI engine, on the basis of a previous EURO IV version. A prototype of the new engine (named 430) was built and tested.
Technical Paper

Comparison Between Two Combustion Chambers for a Motorcycle Racing Engine

2000-06-19
2000-01-1894
An experimental and computational analysis has been performed on the combustion chamber of a two cylinder, four stroke, four valve, spark ignition engine developed by Ducati Motor SpA for the Super Sport Championship. Two cylinder head configurations have been analyzed by using a three dimensional CFD code. Port and valve assemblies do not change. Only the combustion chamber surface changes in order to improve the intake flow. Head flow performances in terms of permeability have been determined by computing the steady discharge coefficients at different valve lifts. These values have also been measured on a steady flow test bench. Head flow performances in terms of flow conditioning, i.e. the attitude to promote tumbling and enhance combustion, have been determined by computing the equivalent solid body tumbling number of the flow field at intake bottom dead center.
Technical Paper

Comparison among different 2-Stage Supercharging systems for HSDI Diesel engines

2009-09-13
2009-24-0072
2-stage supercharging applied to HSDI Diesel engines appears a promising solution for enhancing rated power, low end torque, transient response and hence the launch characteristics of a vehicle. However, many open points still remain, in particular about the impact on emissions control and fuel economy at partial load conditions, generally requiring both high airflow and high EGR rates. The paper analyzes and compares two types of 2-stage supercharging systems: a) two turbochargers of different size; b) one turbocharger coupled to a positive displacement compressor. The goal of the paper is to assess pro and cons of the most feasible configurations for a typical automobile Diesel engine, complying with Euro V regulations and beyond. The base engine is the 2.8L, 4 cylinder in-line unit produced by VM Motori (Cento, Italy), equipped by a standard variable geometry turbocharger.
Journal Article

Comparison between 2 and 4-Stroke Engines for a 30 kW Range Extender

2014-11-11
2014-32-0114
The paper compares two different design concepts for a range extender engine rated at 30 kW at 4500 rpm. The first project is a conventional 4-Stroke SI engine, 2-cylinder, 2-valve, equipped with port fuel injection. The second is a new type of 2-Stroke loop scavenged SI engine, featuring a direct gasoline injection and a patented rotary valve for enhancing the induction and scavenging processes. Both power units have been virtually designed with the help of CFD simulation. Moreover, for the 2-Stroke engine, a prototype has been also built and tested at the dynamometer bench, allowing the authors to make a reliable theoretical comparison with the well assessed 4-Stroke unit.
X