Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Ammonia-Hydrogen Blends in Homogeneous-Charge Compression-Ignition Engine

2017-09-04
2017-24-0087
Ammonia and hydrogen can be produced from water, air and excess renewable electricity (Power-to-fuel) and are therefore a promising alternative in the transition from fossil fuel energy to cleaner energy sources. An Homogeneous-Charge Compression-Ignition (HCCI) engine is therefore being studied to use both fuels under a variable blending ratio for Combined Heat and Power (CHP) production. Due to the high auto-ignition resistance of ammonia, hydrogen is required to promote and stabilize the HCCI combustion. Therefore the research objective is to investigate the HCCI combustion of varying hydrogen-ammonia blending ratios in a 16:1 compression ratio engine. A specific focus is put on maximizing the ammonia proportion as well as minimizing the NOx emissions that could arise from the nitrogen contained in the ammonia. A single-cylinder, constant speed, HCCI engine has been used with an intake pressure varied from 1 to 1.5 bar and with intake temperatures ranging from 428 to 473 K.
Technical Paper

Effect of Additives on Combustion Characteristics of a Natural Gas Fueled HCCI Engine

2014-10-13
2014-01-2662
Homogeneous Charge Compression Ignition (HCCI) is among the new generation of combustion modes which can be applied to internal combustion engines. It is currently the topic of numerous studies in various fields. Due to its operating process, HCCI ensures a good efficiency, similar to that of compression ignition (CI) engines, and low particulate and nitric oxide (NOx) emissions. However, before promoting the use of this kind of engine, several challenges must be addressed, in particular controlling the combustion. Recent work showed that the combustion phasing can be controlled using low concentrations of ozone, an oxidizing chemical species. As ozone generators become increasingly compact, the integration of this kind of device in passenger cars can be considered. The present study investigates the effect of ozone on the combustion of different fuel mixtures. The engine was fuelled with various blends: a 95%methane/5%propane mixture and three different methane/hydrogen mixtures.
Technical Paper

Engine Performances and Emissions of Second-Generation Biofuels in Spark Ignition Engines: The Case of Methyl and Ethyl Valerates

2013-09-08
2013-24-0098
As an alternative to second generation ethanol, valeric esters can be produced from lignocellulose through levulinic acid. While some data on these fuels are available, only few experiments have been performed to analyze their combustion characteristics under engine conditions. Using a traditional spark ignition engine converted to mono-cylinder operation, we have investigated the engine performances and emissions of methyl and ethyl valerates. This paper compares the experimental results for pure valeric esters and for blends of 20% of esters in PRF95, with PRF95 as the reference fuel. The esters propagate faster than PRF95 which requires a slight change of ignition timing to optimise the work output. However, both the performances and the emissions are not significantly changed compared to the reference. Accordingly, methyl and ethyl valerate represent very good alternatives as biofuels for SI engines.
Journal Article

Mechanisms of Enhanced Reactivity with Ozone Addition for Advanced Compression Ignition

2018-04-03
2018-01-1249
Mechanisms responsible for enhanced charge reactivity with intake added ozone (O3) were explored in a single-cylinder, optically accessible, research engine configured for low-load advanced compression ignition (ACI) experiments. The influence of O3 concentration (0-40 ppm) on engine performance metrics was evaluated as a function of intake temperature and start of injection for the engine fueled by iso-octane, 1-hexene, or a 5-component gasoline surrogate. For the engine fueled by either the gasoline surrogate or 1-hexene, 25 ppm of added O3 reduced the intake temperature required for stable combustion by 65 and 80°C, respectively. An ultraviolet (UV) light absorption diagnostic was also used to measure crank angle (CA) resolved in-cylinder O3 concentrations for select motored and fired operating conditions. The O3 measurements were compared to results from complementary 0D chemical kinetic simulations that utilized detailed chemistry mechanisms augmented with O3 oxidation chemistry.
Technical Paper

Ozone Seeding Effect on the Ignition Event in HCCI Combustion of Gasoline-Ethanol Blends

2017-03-28
2017-01-0727
The transportation sector adds to the greenhouse gas emissions worldwide. One way to decrease this impact from transportation is by using renewable fuels. Ethanol is a readily available blend component which can be produced from bio blend­stock, currently used blended with gasoline from low to high concentrations. This study focuses on a high octane (RON=97) gasoline blended with 0, 20, and 50, volume % of ethanol, respectively. The high ethanol blended gasoline was used in a light duty engine originally designed for diesel combustion. Due to the high octane rating and high ignition resistance of the fuel it required high intake temperatures of 443 K and higher to achieve stable combustion in in homogeneously charged compression ignition (HCCI) combustion operation at low load. To enable combustion with lower intake temperatures more commonly used in commercial vehicles, ozone was injected with the intake air as an ignition improver.
X