Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

An Experimental Study of Active Regeneration of an Advanced Catalyzed Particulate Filter by Diesel Fuel Injection Upstream of an Oxidation Catalyst

2006-04-03
2006-01-0879
Passive regeneration (oxidation of particulate matter without using an external energy source) of particulate filters in combination with active regeneration is necessary for low load engine operating conditions. For low load conditions, the exhaust gas temperatures are less than 250°C and the PM oxidation rate due to passive regeneration is less than the PM accumulation rate. The objective of this research was to experimentally investigate active regeneration of a catalyzed particulate filter (CPF) using diesel fuel injection in the exhaust gas after the turbocharger and before a diesel oxidation catalyst (DOC) and to collect data for extending the MTU 1-D 2-layer model to include the simulation of active regeneration. The engine used in this study was a 2002 Cummins ISM turbo charged 10.8 L heavy duty diesel engine with cooled EGR. The exhaust after-treatment system consisted of a Johnson Matthey DOC and CPF (a CCRT®).
Technical Paper

Physical Size Distribution Characterization of Diesel Particulate Matter and the Study of the Coagulation Process

1978-02-01
780788
Diesel particulate matter in both the diluted and undiluted state is subject to the processes of coagulation, condensation or evaporation, and nucleation which causes continuous changes in its physical characteristics. The Electrical Aerosol Analyzer (EAA) is used to measure the diesel particle size distribution in the MTU dilution tunnel for a naturally aspirated direct-injection diesel engine operated on the EPA 13 mode cycle. The design and development of accurate and repeatable sampling methods using the EAA are presented. These methods involve both steady-state tunnel and bag measurements. The data indicate a bimodal nature within the 0.001 to 1 μm range. The first mode termed the “embroynic mode” has a saddle point between 0.005 to 0.015 μm and the second mode termed the “aggregation mode” lies between .08 to .15 μm for the number distribution.
Technical Paper

Status of Diesel Particulate Measurement Methods

1984-02-01
840345
The diesel engine emits exhaust particles that pose a unique set of measurement requirements. To document the state-of-the-art of measurement technology and to improve measurement quality, the Smoke and Particulate Panel of the Diesel Exhaust Composition group of the Coordinating Research Council reviewed published literature and particulate-sampling data generated by panel members to identify (1) the effects of key sampling parameters on measured particulate mass, (2) the causes of measurement variability, (3) the effects of dilution system design on particulate mass measurement, and (4) promising real-time mass measurement methods. The panel found greater measurement difficulty associated with particulates than for gaseous pollutants because of engine-produced variations, the sensitivity of measured particulate mass to dilution parameters, and random errors in the independent measurements which comprise a particulate measurement.
Technical Paper

The Characterization of the Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter

1978-02-01
780111
One of the more objectionable aspects of the use of diesel engines has been the emission of particulate matter. A literature review of combustion flames, theoretical calculations and dilution tunnel experiments have been performed to elucidate the chemical and physical processes involved in the formation of diesel particulate matter. A comparative dilution tunnel study of diluted and undiluted total particulate data provided evidence supporting calculations that indicate hydro-carbon condensation should occur in the tunnel at low exhaust temperatures. The sample collection system for the measurement of total particulate matter and soluble sulfate in particulate matter on the EPA 13 mode cycle is presented. A method to correct for hydrocarbon interferences in the EPA barium chloranilate method for the determination of sulfate in particulate matter is discussed.
Technical Paper

The Effects of Ambient Temperature and Vehicle Load on a Diesel Powered Truck Cooling System Performance Using a Computer Simulation Program

1984-11-01
841710
A computer simulation model to predict the thermal responses of an on-highway heavy duty diesel truck in transient operation was used to study several important cooling system design and operating variables. The truck used in this study was an International Harvester COF-9670 cab-over-chassis vehicle equipped with a McCord radiator, Cummins NTC-350 diesel engine, Kysor fan-clutch and shutter system, aftercooler, and standard cab heater and cooling system components. Input data from several portions of a Columbus to Bloomington, Indiana route were used from the Vehicle Mission Simulation (VMS) program to determine engine and vehicle operating conditions for the computer simulation model. The thermostat-fan, thermostat-shutter-fan, and thermostat-winterfront-fan systems were studied.
Technical Paper

The Effects of Two Catalyzed Particulate Filters on Exhaust Emissions from a Heavy Duty Diesel Engine: Filtration and Particulate Matter Oxidation Characteristics Studied Experimentally and Using a 1- D 2- Layer Model

2005-04-11
2005-01-0950
A 1-D 2-layer model developed previously at MTU was used in this research to predict the pressure drop, filtration characteristics and various properties of the particulate filter and the particulate deposit layer. The model was used along with dilute emission data to characterize two catalyzed particulate filters (CPFs) having different catalyst loading and catalyst application processes. The model was calibrated and validated with data obtained from steady state experiments conducted using a 1995 Cummins M11-330E heavy-duty diesel engine with manual EGR with different fuels for the two different CPFs. The two different catalyzed particulate filters were CPF III (5 gms/ft3 Pt) and CPF V (50 gms/ft3 Pt). Both the CPFs had cordierite substrates with CPF III and CPF V had MEX and NEX catalyst type formulation respectively. The CPF III filter was catalyzed using a solution-impregnated process while the CPF V filter was catalyzed using a wash coat process.
Technical Paper

The Filtration and Particulate Matter Oxidation Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter: Experimental and 1-D 2-Layer Model Results

2005-04-11
2005-01-0949
A 1-D 2-layer model developed previously at MTU was used in this research to predict the pressure drop, filtration characteristics and various properties of the particulate filter and the particulate deposit layer. The model was calibrated and validated for this CPF with data obtained from steady state experiments conducted using a 1995 Cummins M11-330E heavy-duty diesel engine with manual EGR and using ULSF. The CPF used is a NGK filter having a cordierite substrate with NEX catalyst type formulation (54% porosity, 15.0 μm mean pore diameter and 50 gms/ft3 Pt). The filter was catalyzed using a wash coat process. The model was used to predict the pressure drop, particulate mass retained inside the CPF, particulate mass filtration efficiency and concentration downstream of the CPF with agreement between the experimental and simulated data.
X