Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Dynamic Analysis of Ball Bearings

2009-10-06
2009-36-0057
The development area of the bearing's industry constantly searches for a better efficiency and a lower film oil thickness in surfaces with high roughness under relative motion. In these cases, operational conditions like high loads and temperatures, as well as low safety margins for weight and size, considering the lubricant viscosity, should be taken into account as fundamental design parameters. In order to know better the elastohydrodinamic lubrication effect, firstly, it is necessary to understand deeply and accurately the applied loads on the ball element bearings. For this purpose, the accurate analysis and study of the performance of these machine components is carried out, using analytical methods and giving special focus on the velocities and accelerations involved, as well as different types of loads applied on the ball element and their distribution and consequences during the ball motion inside the bearing rings.
Technical Paper

Finite Difference Model for Journal Bearings Applied in the Camshaft Support Elements

2003-11-18
2003-01-3557
The modern passenger cars structure has the valve actuation system with usual application in combustion engines. These mechanisms offer the possibility to change the rotational movement into an oscillating movement, so this simple construction causes an elementary higher dynamic stiffness, but gives costs advantages in opposite of lever controls. Regarding the valve actuation over tribology view increase the cam / tappet friction losses. The friction forces had decreased considerably through the use of roller cam, which in comparison to cams and flat systems is possible to save up to 70% [17]. The friction increased in the camshaft / tappet system leads to an elevate heat stream, that must be derived from the contact with the complete system and the lubricant oil. The objective of this paper is to introduce the oil film pressure distribution in different boundary conditions, the modeling first part.
Technical Paper

Hydrodynamic Lubrication Applied to Bearings with Oscillating Motion in Internal Combustion Engines

2005-11-22
2005-01-4004
This work has for purpose to develop a mathematical model for the hydrodynamic lubrication of bearings with oscillating motion. The motivation lies in the tribology of internal combustion engines, specifically the lubrication problem at the bearing existing between the connecting rod and the piston pin. This kind of bearing does not perform a complete rotation, thus characterizing a new class of oscillating motion bearings. For the analysis of lubrication, a viscous fluid flow with negligible inertia inside a narrow gap formed by two surfaces is considered. The surfaces can be considered flat and are inclined to each other. The inner surface is fixed whereas the outer one performs an oscillating motion which generates a combined Couette-Poiseuille flow inside the gap. Using the same assumptions as in classical Reynolds' lubrication equation, the simplified mass and momentum conservation equations are analytically solved to determine the velocity and pressure distributions.
Technical Paper

Hydrodynamic Lubrication Evaluation of Thrust Bearings

2010-10-06
2010-36-0117
The pressure generation within the lubricant fluid present in the clearance between a thrust bearing and the collar attached to the shaft has a fundamental importance to avoid contact between solid parts with axial relative motion. Any existing contact can lead to friction, wear and, as a consequence, failure of elements on a rotating machine. Therefore, in order to design an effective bearing, it is important to know how the pressure is generated within the oil film and the magnitude of the load capacity transmitted from the collar to the bearing throughout the fluid. Thus, it is necessary to solve the Reynolds' Equation to obtain the distribution of pressure on the sections under Hydrodynamic Lubrication. Then several operational parameters can be obtained, such as, the total load capacity, lubricant fluid flow, position of the maximum pressure and so on.
Technical Paper

Influence of Different Geometries of Hydrodynamic Bearings in the Dynamic Response of a Rotating System

2010-10-06
2010-36-0123
Hydrodynamic bearings are widely used in rotating machines, being the element responsible for the interaction between the rotor and the supporting structure. Therefore, in order to describe the dynamic behavior of the rotating shafts, it is necessary to know the journal bearings dynamic characteristics. For this reason, this work aims to analyze the influence of three different geometries of journal bearings when operating in a small turbocharger for vehicular application, which implies in high rotation speed and load capacity. In this paper the analysis will be done through the frequency response of the proposed system and the equivalent damping and stiffness coefficients coming from the oil film present in the bearings. These dynamic coefficients are obtained with a spring-damper approach, in order to represent the inherent flexibility and damping of the oil film.
Technical Paper

Modal Analysis of Valve train Test Rig Support Structure

2001-03-05
2001-01-3878
Improvement of fuel economy is one of the most important development targets of modern passenger car engines. Modern solutions such as Direct Injection, Variable Valve Trains, or Cylinder Deactivation help to obtain this requirement. Each one of these techniques optimize the thermodynamic efficiency of the engine. However, the mechanical structure of combustion engines shows many areas of possible optimization regarding the mechanical efficiency. Engine friction affects the overall fuel consumption, mainly under low speed conditions combined with part load. Low speed/part load conditions are relevant for the real life fuel consumption of an engine, as well as friction improvements have significant effects on the fuel economy. The valve train drive produces the dominant friction portion under these conditions. Hence the friction optimization of this engine subsystem is one of the key issues regarding mechanical efficiency.
Technical Paper

Roller Bearing Design Optimization Applying Hertz Contact Theory

1999-12-01
1999-01-3036
In a large part of the mechanical elements used in machines and equipment, the preponderant failure mode is not that of fatigue of the element itself, but certainly the fatigue of a small point where the contact occurs. The prime example of this are the roller bearings, that they fail not by “breaking”, but by surface fatigue at contact points or on the tracks where there is contact between the rings and the rolling bodies. The optimization of the contact geometry, the material and the lubrication used can allow us to have larger admissible loads or lower system's costs where there is great influence of the contact fatigue. To make this optimization easier, a software was developed for a Windows platform, including the whole contact theory, the life calculations under surface fatigue and the lubricating fluid film thickness. In an interactive way, the user can change the data entrances such as material or geometry until an ideal solution is found for its problem.
Technical Paper

Sensitivity Analysis for the Lubricant Film in Bearings Under THD Lubrication

2010-10-06
2010-36-0107
The study about the dynamic characteristics of a great number of mechanical parts has been promoted by the necessity of decreasing the vibrational effects in mechanical systems, as the reduction of superficial fatigue. In this way, the research around, even, a simple part like a hydrodynamic bearing is very important, especially in the automotive industry. In this case, the lubricant acts like a flexible liking element between the journal-bearing surfaces. The lubrication is essential for the engine, because it reduces the wear between the internal parts and prevents the metal contact. Due to the shear stresses present in the lubricant, the temperature rises and, consequently, it changes the lubricant properties. The viscosity is strongly dependent on the temperature and it is the parameter that characterizes the fluid flow and its dynamic behavior. Any temperature change induces a consequent modification in the lubricant behavior.
Technical Paper

Transient Multi-Level Elastohydrodynamic Point Contact Algorithm Experimental Validation

2010-10-06
2010-36-0088
One of the great challenges of engineering teams nowadays is to overcome long and costly project experimentation phases. One effective way of decreasing such project demands is to come up with a firsthand prototype with high success probability. In order to do so, the project team should rely on robust numerical models, which can represent most of the real-life product behaviors, for instance system dynamics. For rolling element bearings, such dynamic models have to consider the dynamic interactions between its components, i.e., rolling elements and raceways. The only vibration transmitting points on rolling element bearings are the lubricated contacts. Therefore, in order to represent the full bearing dynamic behavior on a numerical model, an efficient transient contact model, which depicts the actual contact behavior, is fundamental.
X