Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Application of a FIE Computer Model to an In-Line Pump-Based Injection System for Diesel Engines

1997-02-24
970348
A computer model simulating the flow in fuel injection systems has been used in order to investigate the fuel injection processes in an in-line pump-based fuel injection system for direct-injection diesel engines. The model is one-dimensional and it is based on the mass and momentum conservation equations for the simulation of the fuel flow and on the equilibrium of forces for the simulation of the mechanical movements of the valves present in the system. The fuel injection system tested comprised an in-line pump whose characteristics were examined by using as input the measured line pressure signal and by modeling the pump operation itself as well as the fuel flow through single- and two-stage injectors. For the validation of the model, extensive comparison with experimental data has been performed for a wide range of pump operating conditions.
Technical Paper

Effect of Fuel Injection Processes on the Structure of Diesel Sprays

1997-02-24
970799
A diesel spray model has been developed and validated against experimental data obtained for different injection and surrounding gas conditions to allow investigation of the relative importance of the different physical processes occurring during the spray development. The model is based on the Eulerian-Lagrangian approximation and the Navier-Stokes equations, simulating the gas motion, are numerically solved on a collocated non-uniform curvilinear non-orthogonal grid, while the spray equation is solved numerically using a Lagrangian particle tracking method. The injection conditions are determined by another recently developed model calculating the flow in the fuel injection system, the sac volume and injection holes area which accounts for the details of the injection velocity, the fuel injection rate per injection hole and occurrence of hole cavitation. Thus, differences between the sprays from inclined multihole injectors can be simulated and analysed.
Technical Paper

Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems

1995-02-01
950078
A computer model solving the 1-D flow in a typical fuel injection system for direct-injection diesel engines is presented. A Bosch distributor - type VE pump connected to four Stanadyne pencil - type nozzles has been used to validate the computer model over a wide range of operating conditions. Validation of the developed computer code has been performed for eight representative test cases. The predicted values which were compared with the experimental ones include the pumping chamber pressure, the line pressure, the needle lift and the injection rate. Results using as input the measured pumping chamber pressure are also presented in order to identify the error in the injection rate signal attributed to the difference between the simulated and the experimental pumping chamber pressure. In addition, the total fuel injection quantity for pump speeds between 500 and 2000 rpm and lever positions between 20% to 100% was calculated and compared with measurements.
Technical Paper

LES Predictions of the Vortical Flow Structures in Diesel Injector Nozzles

2009-04-20
2009-01-0833
Vortex flow realized inside the sac volume and the injection holes of automotive and heavy duty injectors plays an important role in the formation and development of cavitation and the near-nozzle structure of the emerging fuel sprays. Large-scale vortical flow structures are mainly induced by the geometric details of the injector. Vortex flow may be also induced by eccentric needle opening as well as the manufacturing tolerances of locations critical to the nozzle geometry such as the hole entry shape. The present paper assesses the predictive capability of a Large Eddy Simulation model against LDV measurements of the flow velocity obtained inside a transparent nozzle replica. Model predictions are compared also with RANS model predictions obtained using the standard k-ε model.
Technical Paper

Modeling of Advanced High-Pressure Fuel Injection Systems for Passenger Car Diesel Engines

1999-03-01
1999-01-0910
A one-dimensional, transient and compressible flow model was used in order to simulate the flow and pressure distribution in advanced high-pressure fuel injection systems; these include electronic distributor-type pumps with either axial or radial plungers and a common-rail system. Experimental data for the line pressure, needle lift, injection rate and total fuel injection quantity obtained over a wide range of operating conditions (from idle to high speed/full load) were used to validate the model. The FIE system used for validation comprised an electronic high-pressure pump connected to two-stage injectors of different type including 6-hole vertical and 5-hole inclined conical-sac and VCO nozzles.
Technical Paper

Modeling of Pressure-Swirl Atomizers for GDI Engines

1999-03-01
1999-01-0500
A new simulation approach to the modeling of the whole fuel injection process within a common-rail fuel injection system for direct-injection gasoline engines, including the pressure-swirl atomizer and the conical hollow-cone spray formed at the nozzle exit, is presented. The flow development in the common-rail fuel injection system is simulated using an 1-D model which accounts for the wave dynamics within the system and predicts the actual injection pressure and injection rate throughout the nozzle. The details of the flow inside its various flow passages and the discharge hole of the pressure-swirl atomizer are investigated using a two-phase CFD model which calculates the location of the liquid-gas interface using the VOF method and estimates the transient formation of the liquid film developing on the walls of the discharge hole due to the centrifugal forces acting on the swirling fluid.
Technical Paper

Pressure-Swirl Atomizers for DISI Engines: Further Modeling and Experiments

2000-03-06
2000-01-1044
A combined two-phase CFD nozzle model and 1-D fuel injection system model is used to predict the flow development inside the discharge hole of a pressure-swirl atomizer connected to a common-rail based fuel injection system for DISI engines. The fuel injection model accounts for the transient pressure pulses developing inside the common-rail and the injector upstream of the nozzle tip and predicts the fuel injection rate through the nozzle. This is then used as input to a 3-D single-phase CFD model estimating the transient development of the swirl velocity inside the pressure-swirl atomizer, as a function of the geometric characteristics of nozzle.
Technical Paper

Spray and Combustion Development in a Four-Valve Optical DI Diesel Engine

2000-03-06
2000-01-1183
An optical single-cylinder four-valve high speed DI Diesel engine equipped with a high-pressure electronic fuel injection system has been used to obtain information about the spray development, combustion and exhaust emissions (NOx and smoke levels) for a range of operating conditions corresponding to engine speeds between 600 and 1800 rpm, injection pressures up to 1200 bars and fuel injection quantities from idle to full load. Two six-hole vertical mini-sac type injection nozzles with different hole sizes have been employed in order to investigate the effect of nozzle hole diameter on spray formation, combustion and exhaust emissions. Parallel to the experimental programme, a computational investigation of the fuel flow distribution inside the injection system and of the subsequent spray characteristics has been performed in order to assist in the interpretation of the results.
Technical Paper

Structure of high-pressure diesel sprays

2001-09-23
2001-24-0009
A comprehensive set of computational and experimental results for high- pressure diesel sprays are presented and discussed. The test cases investigated include injection of diesel into air under both atmospheric and high pressure/temperature chamber conditions, injection against pressurized and cross-flowing CF6 simulating respectively the density and flow conditions of a diesel engine at the time of injection, as well as injection into the piston bowl of both research and production turbocharged high-speed DI diesel engines. A variety of high-pressure injection systems and injector nozzles have been used including mechanical and electronic high-pressure pumps as well as common-rail systems connected to nozzles incorporating a varying number of holes with diameters ranging from conventional to micro-size.
X