Refine Your Search

Topic

Search Results

Technical Paper

Automotive Emissions of Polynuclear Aromatic Hydrocarbons

1974-02-01
740564
Automotive exhaust emissions of polynuclear aromatic (C16+) hydrocarbons (PNA) were reduced by 65-70% by current emissions control systems and by about 99% by two experimental advanced emission control systems. At a given level of emission control, PNA emission was primarily controlled by fuel PNA content through the transient storage of PNA in engine deposits and their later emission under more severe engine operating conditions. A relatively minor contribution to PNA emission was made by PNA synthesized from lower molecular weight fuel aromatics, particularly C10-C14 aromatics. Deposit-related PNA emissions were linearly correlated with the PNA content of the deposit formation fuel. In comparison with a fuel of field-average PNA content (0.5 ppm benzo(a)pyrene), a field-maximum fuel (3 ppm) contained 4 to 7 times as much of three major PNA species and caused 3 to 5 times higher emissions of these species.
Technical Paper

Ceramic Particulate Traps for Diesel Emissions Control - Effects of a Manganese-Copper Fuel Additive

1988-02-01
880009
The effect of the use of a manganese-copper fuel additive with a Corning EX-47 particulate trap on heavy-duty diesel emissions has been investigated; reductions in total particulate matter (70%), sulfates (65%), and the soluble organic fraction (SOF) (62%) were measured in the diluted (15:1) exhaust and solids were reduced by 94% as measured in the raw exhaust. The use of the additive plus the trap had the same effect on gaseous emissions (hydrocarbons and oxides of nitrogen) as did the trap alone. The use of the additive without the trap had no effect on measured gaseous emissions, although sulfate increased by 20%. Approximately 50% of the metals added to the fuel were calculated to be retained in the engine system. The metals emitted by the engine were collected very efficiently (>97%) by the trap even during regeneration, which occured 180°C lower when the additive was used.
Technical Paper

Development Status of the Detroit Diesel Corporation Methanol Engine

1990-09-01
901564
The development of the DDC methanol engine has been an evolutionary process, with each subsequent configuration showing significant durability and/or emission improvement over its predecessor. Sixty demonstration engines are now in service in the field, including fifty-four (54) urban bus engines, five (5) truck engines, and one (1) generator set engine. While nitrogen oxide (NOx) and particulate emissions from the methanol engine are inherently low, a durable solution to the effective control of hydrocarbon (HC) emissions has been an especially challenging area. The 1991 Federal urban bus transient emission standards (including 0.10 gm/bhp-hr particulate) have been met with several combinations of compression ratio, intake port height, exhaust valve cam profile, injector tip design, and electronic control strategies, and without exhaust aftertreatment devices or fuel ignition improvers.
Technical Paper

Diesel Exhaust Particle Size Distributions - Fuel and Additive Effects

1978-02-01
780787
Particle mass and size distribution measurements have been made on the exhaust of an Onan prechamber diesel engine. Seven fuels were examined: no. 1 and no. 2 diesel fuel, 40 and 50 cetane number secondary reference fuels, and no. 2 diesel fuel doped with three different concentrations of Lubrizol 565, a barium-based smoke suppressant. The no. 1 and no. 2 diesel fuels and the 50 cetane number reference fuels produced very similar emissions with emission indices in the range 0.3-1.3 mg (gm-fuel)-1 and volume mean diameters between .09 and 0.15 μm. The 40 cetane number reference fuel produced both smaller emission indices, 0.2 to 0.8 mg (gm-fuel)-1, and particle diameters, 0.03 to 0.09 μm. These reductions were apparently related to the longer ignition delay period of the 40 cetane number fuel, which allowed better mixing of the fuel and air prior to combustion.
Technical Paper

Diesel Trap Performance: Particle Size Measurements and Trends

1998-10-19
982599
Particle concentrations and size distributions were measured in the exhaust of a turbocharged, aftercooled, direct-injection, Diesel engine equipped with a ceramic filter (trap). Measurements were performed both upstream and downstream of the filter using a two-stage, variable residence time, micro-dilution system, a condensation particle counter and a scanning mobility particle sizer set up to count and size particles in the 7-320 nm diameter range. Engine operating conditions of the ISO 11 Mode test were used. The engine out (upstream of filter) size distribution has a bimodal, log normal structure, consisting of a nuclei mode with a geometric number mean diameter, DGN, in the 10-30 nm range and an accumulation mode with DGN in the 50-80 nm range. The modal structure of the size distribution is less distinct downstream of the filter. Nearly all the particle number emissions come from the nuclei mode, are nanoparticles (Dp < 50nm), and are volatile.
Technical Paper

Electrostatic Collection of Diesel Particles

1986-03-01
860009
Diesel particles carry charges ranging from 1-5 units of elementary charge per particle. The charge is bipolar, i.e., there are approximately equal numbers of positively and negatively charged particles. The charge distribution with respect to size follows a high temperature, Boltzmann equilibrium relationship. The first part of this paper describes charge measurements made on diesel particles emitted by three different diesel engines, and postulates a charging mechanism. The second part of the paper is an examination of how this natural charge may be used to collect particles from the exhaust. The charge level produced by combustion is only slightly lower than the charge level produced by the corona discharge in a conventional electrostatic precipitator. Thus, a simple electrostatic precipitator without a corona section will collect diesel particles affectively.
Journal Article

Emissions Effects of Hydrogen as a Supplemental Fuel with Diesel and Biodiesel

2008-04-14
2008-01-0648
A 1.9 liter Volkswagen TDI engine has been modified to accomodate the addition of hydrogen into the intake manifold via timed port fuel injection. Engine out particulate matter and the emissions of oxides of nitrogen were investigated. Two fuels,low sulfur diesel fuel (BP50) and soy methyl ester (SME) biodiesel (B99), were tested with supplemental hydrogen fueling. Three test conditions were selected to represent a range of engine operating modes. The tests were executed at 20, 40, and 60 % rated load with a constant engine speed o 1700 RPM. At each test condition the percentage of power from hydrogen energy was varied from 0 to 40 %. This corresponds to hydrogen flow rates ranging from 7 to 85 liters per minute. Particulate matter (PM) emissions were measured using a scaning mobility particle sizer (SMPS) and a two stage micro dilution system. Oxides of nitrogen were also monitored.
Technical Paper

Exhaust Particle Number and Size Distributions with Conventional and Fischer-Tropsch Diesel Fuels

2002-10-21
2002-01-2727
Diesel exhaust particle number concentrations and size distributions, as well as gaseous and particulate mass emissions, were measured during steady-state tests on a US heavy-duty engine and a European passenger car engine. Two fuels were compared, namely a Fischer-Tropsch diesel fuel manufactured from natural gas, and a US D2 on-highway diesel fuel. With both engines, the Fischer-Tropsch fuel showed a considerable reduction in the number of particles formed by nucleation, when compared with the D2 fuel. At most test modes, particle number emissions were dominated by nucleation mode particles. Consequently, there were generally large reductions (up to 93%) in the total particle number emissions with the Fischer-Tropsch fuel. It is thought that the most probable cause for the reduction in nucleation mode particles is the negligible sulphur content of the Fischer-Tropsch fuel. In general, there were also reductions in all the regulated emissions with the Fischer-Tropsch fuel.
Technical Paper

Further Studies of Electrostatic Collection and Agglomeration of Diesel Particles

1991-02-01
910329
The use of a corona-less electrostatic precipitator as a collection and agglomeration device for diesel soot has been investigated. It collects and grows diesel particles which are emitted in the submicron diameter range and grow into much larger particles. These larger particles may then be collected with a relatively simple inertial device. Previous testing of a full scale precipitator designed for a Caterpillar 3304 engine showed that the reduction in sub-micron sized mass from the engine was roughly 30 to 40%. Greater reductions were desired. A sub-scale electrostatic agglomerator was built to analyze in greater detail the behavior of an existing full scale device. Tests were designed to determine; the charged fraction of the particles from the engine used, the collection efficiency of the electrostatic agglomerator, the effect of geometry on collection efficiency, and the size distribution of the particles reentrained after electrostatic collection.
Technical Paper

Further Studies with a Hydrogen Engine

1978-02-01
780233
This paper describes the performance and emissions of a hydrogen-fueled, spark-ignited engine. An electronic control device, designed to provide the engine with a timed injection of the fuel, is shown to give high mean effective pressures and high efficiencies. The oxides of nitrogen from the exhaust gases have been analyzed and the mechanism for their formation is reviewed. The paper further describes an experiment with traces of hydrocarbons added to the hydrogen in an attempt to explain any additional phenomena that may be taking place during the combustion, such as “prompt NO” which is known to occur in hydrocarbon flames only. As it turns out, such additions have a negligible effect on the NOx formation in the region investigated.
Technical Paper

Hydrocarbon Effect on a Fe-zeolite Urea-SCR Catalyst: An Experimental and Modeling Study

2010-04-12
2010-01-1171
Synergies between various catalytic converters such as SCR and DPF are vital to the success of an integrated aftertreatment system for simultaneous NO and particulate matter control in diesel engines. Several issues such as hydrocarbon poisoning, thermal aging and other coupled aftertreatment dynamics need to be addressed to develop an effective emission control system. This work is significant especially in an integrated DPF-SCR aftertreatment scenario where the SCR catalyst on the filter substrate is exposed to un-burnt diesel hydrocarbons during active regeneration of the particulate filter. This paper reports an experimental and modeling study to understand the effect of hydrocarbons on a Fe-zeolite urea-SCR catalyst. Several bench-reactor tests to understand the inhibition of NO oxidation, to characterize hydrocarbon storage and to investigate the impact of hydrocarbons on SCR reactions were conducted.
Technical Paper

Impact of a Ceramic Trap and Manganese Fuel Additive on the Biological Activity and Chemical Composition of Exhaust Particles from Diesel Engines Used in Underground Mines

1987-09-14
871621
This study examines the effect of a ceramic particle trap and a manganese fuel additive on the mutagenic activity and chemical composition of diesel exhaust particulate matter from a heavy-duty mining engine. Particles were collected by dilution tunnel sampling from a 4-cylinder, Caterpillar 3304, naturally-aspirated, indirect-injection engine operated at six steady-state conditions. Depending on engine load and speed the ceramic particle trap reduced the following emissions: particulate matter, 80 – 94%; soluble organic fraction (SOF), 83 – 95%; 1-nitropyrene, 94 – 96%; and SOF mutagencity, 72% (cycle-weighted average). When the Mn fuel additive was used without a ceramic particle trap the total cycle mutagenic activity emitted increased 7-fold, in part, due to elevated emissions of 1-nitropyrene.
Technical Paper

In-Cylinder Measurements of Particulate Formation in an Indirect Injection Diesel Engine

1986-02-01
860024
Measurements of particle concentrations in one cylinder of a 1982 5.7 liter GM V-8 diesel engine have been made using a unique total cylinder sampling system. The first part of the paper is devoted to an examination of the performance of the sampling system. The role of blowoff and nucleation in the formation of sample artifacts is discussed. The remainder of the paper is devoted to the results of a study of the formation and removal of carbon particles during diesel engine combustion. Several operating conditions have been examined. The influence of injection timing, load, EGR, and oxygen addition on particle formation and removal has been investigated. The concentrations of volatile and nonvolatile particulate matter have been measured as a function of crankangle position. Particle formation begins 1-5 crankangle degrees (CAD) after the start of combustion.
Technical Paper

In-Cylinder Measurements of Soot Production in a Direct-Injection Diesel Engine

1988-02-01
880344
In-cylinder and exhaust soot mass measurements have been made on a single-cylinder conversion of a 4-cylinder, 2.8 1, high-swirl, direct-injection diesel engine using a sampling system which allows dumping, diluting, quenching, and collecting the entire contents of the cylinder on a time scale o£ about 1 ms. Experiments have been performed at engine speeds of 1,000 and 1,500, and equivalence ratios, ϕ, of 0.4 and 0.7. Soot mass first appears shortly after top dead center and reaches a peak between 15 and 30 crankangle degrees after top dead center (CAD ATDC). After reaching its peak value, soot concentration decreases with increasing crankangle and approaches exhaust levels by 40-60 CAD ATDC. The time lag between the start of combustion and the first appearance of soot increases with ϕ and ranges from 0.2 to 1 ms. The initial rate of soot formation ranges from 0.26 to 0.30 mg ms−1 and varies little with speed or ϕ.
Technical Paper

Influence of Fuel Additives and Dilution Conditions on the Formation and Emission of Exhaust Particulate Matter from a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-2018
Experiments were performed to measure the number-weighted particle size distributions emitted from a gasoline direct injection (GDI) engine. Measurements were made on a late model vehicle equipped with a direct injection spark ignition engine. The vehicle was placed on a chassis dynamometer, which was used to load the engine to road load at five different vehicle speeds ranging from 15 - 100 km/hr. Dilution of the exhaust aerosol was carried out using a two-stage dilution system in which the first stage dilution occurs as a free jet. Particle size distributions were measured using a TSI 3934 scanning mobility particle sizer. Generally speaking, the presence of the additives did not have a strong, consistent influence on the particle emissions from this engine. The polyether amine demonstrated a reduction in particle number concentration as compared to unadditized base fuel.
Technical Paper

Influence of a Fuel Additive on the Performance and Emissions of a Medium-Duty Diesel Engine

1994-03-01
941015
This report describes tests of a fuel additive in a medium-duty, high-swirl, direct-injection diesel engine. The additive was found to have little influence on general combustion performance or on NOx emissions. On the other hand, it had a profound effect on particulate emissions. This was most clear under high load where particle emissions are highest. Here, when the engine was switched from running on the base fuel to the additive treated fuel, particle emissions at first increased and then fell to levels about 40% lower (by particle volume) than those initially produced by the base fuel. The additive had a long lasting effect. After running with the additive for about 25 hours, emission levels with the base fuel were only slightly higher than those with the additive treated fuel. We believe that the additive action is associated with a combination of cleaning and surface conditioning. More work should be done to understand the relative importance of these two mechanisms.
Technical Paper

Injection Timing and Bowl Configuration Effects on In-Cylinder Particle Mass

1992-09-01
921646
The formation of particles in the combustion chamber of a direct injection diesel engine has been studied with the use of the Total Cylinder Sampling Method. With this method, nearly the entire contents of the cylinder of an operating diesel engine can be quickly removed at various times during the combustion process. The particle mass and size distributions present in the sample can then be analyzed. If quenching of the combustion process is quick and complete, the resulting samples are representative of the particle mass and size distributions present in the cylinder near the time sampling begins. This paper discusses the effect of injection timing and piston bowl shape on the particle formation and oxidation. Example size distribution measurements are also shown. The particle concentrations in the cylinder were measured for three different injection timings with the standard piston installed in the engine.
Technical Paper

Light Absorption Measurements of Diesel Particulate Matter

1981-02-01
810181
Light absorption and scattering coefficients have been measured for particles emitted by two diesel engines; one direct injection and one indirect injection, operating over a range of speeds and loads. Integrating plate absorption measurements yield a specific absorption coefficient of 9.1 square meters per gram of non-volatile particulate matter at 550 nm wavelength. This absorption coefficient is inversely proportional to wavelength and independent of engine operating conditions or type. The scattering coefficient was simultaneously measured as 1.3 square meters per gram of undifferentiated particulate matter. These experimental results are shown to be in the range predicted by theoretical absorption and scattering calculations, which have been made for elongated carbon-void particles.
Technical Paper

Measurements of Polycyclic Aromatic Compounds in the Cylinder of an Operating Diesel Engine

1984-02-01
840364
A unique system which allows sampling of the entire contents of one of the cylinders of a 5.7-liter V-8 indirect-injection diesel engine has been developed. An explosively actuated cutter ruptures a diaphragm in the combustion chamber and allows the contents of the cylinder to rush out and be subsequently diluted and quenched with cool nitrogen. Particles are collected with a high-volume impactor/filter system. This system has been used to collect a series of particle samples at crankangles ranging from 5 to 40 degrees after top dead center. Particle samples from the exhaust were also obtained. The samples have been extracted to determine the soluble organic fraction. These extracts have been analyzed for five polycyclic aromatic compounds: pyrene, fluoranthene, benz(a)pyrene, benz(k)fluoranthene, and 1-nitropyrene. The results indicate significant removal of the first four between the combustion chamber and the exhaust manifold.
Journal Article

Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

2012-04-16
2012-01-1295
Although the urea-SCR technology exhibits high NO reduction efficiency over a wide range of temperatures among the lean NO reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NO reduction performance at low-temperature operating conditions (T ≺ 150°C). We postulate that the poor performance is either due to NH₃ storage inhibition by species like hydrocarbons or due to competitive adsorption between NH₃ and other adsorbates such as H₂O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite-based urea-SCR catalysts based on bench reactor experiments.
X