Refine Your Search

Search Results

Technical Paper

A Comparison Between NHTSA Crash Test Data and CRASH3 Frontal Stiffness Coefficients

1990-02-01
900101
The appropriateness of the set of eight frontal stiffness coefficients used by the CRASH3 program to estimate vehicle deformation energy (and to subsequently derive estimates of vehicle delta-V) is examined. This examination consists of constructing so-called CRASH energy plots based on 402 frontal fixed barrier impact tests contained in the NHTSA's Vehicle Test Center Data Base (VTCDB) digital tape file. It is concluded that the use of category coefficients within the CRASH3 program can result in large delta-V errors, reaffirming the inappropriateness of this program for use in individual accident reconstructions. The use of the CRASH3 category stiffness coefficients is seen to generally overestimate vehicle energy absorption for vehicles with small amounts of frontal crush and to underestimate vehicle energy absorption for vehicles sustaining large crush.
Technical Paper

A Perspective on Side Impact Occupant Crash Protection

1990-02-01
900373
The NHTSA notices of proposed rulemaking on side impact protection have focused worldwide attention on one of the most difficult and frustrating efforts in automobile crash safety. Traditional vehicle design has evolved obvious structural contrasts between the side of the struck vehicle and the front of the striking vehicle. Protection of near-side occupants from intruding door structure is a most perplexing engineering challenge. Much useful and insightful engineering work has been done in conjunction with NHTSA's proposed rulemaking. However, there are many major engineering issues which demand further definition before reasonable side impact rulemaking test criteria can be finalized. This paper reviews recent findings which characterize the human factors, biomechanics, and occupant position envelope of the typical side impact crash victim.
Technical Paper

Assessing the Safety Performance of Occupant Restraint Systems

1990-10-01
902328
The purpose of this study was to investigate approaches evaluating the performance of safety systems in crash tests and by analytical simulations. The study was motivated by the need to consider the adequacy of injury criteria and tolerance levels in FMVSS 208 measuring safety performance of restraint systems and supplements. The study also focused on additional biomechanical criteria and performance measures which may augment FMVSS 208 criteria and alternative ways to evaluate dummy responses rather than by comparison to a tolerance level. Additional analysis was conducted of dummy responses from barrier crash and sled tests to gain further information on the performance of restraint systems. The analysis resulted in a new computer program which determined several motion and velocity criteria from measurements made in crash tests.
Technical Paper

Crash Protection in Near-Side Impact - Advantages of a Supplemental Inflatable Restraint

1989-02-01
890602
Collision Safety Engineering, Inc. (CSE), has developed a test prototype system to protect occupants during lateral impacts. It is an inflatable system that offers the potential of improved protection from thoracic, abdominal and pelvic injury by moving an impact pad into the occupant early in the crash. Further, it shows promise for head and neck protection by deployment of a headbag that covers the major target areas of B-pillar, window space, and roofrail before head impact. Preliminary static and full-scale crash tests suggest the possibility of injury reduction in many real-world crashes, although much development work remains before the production viability of this concept can be established. A description of the system and its preliminary testing is preceded by an overview of side impact injury and comments on the recent NHTSA Rule Making notices dealing with side-impact injury.
Technical Paper

Crush Energy in Accident Reconstruction

1986-02-24
860371
Vehicle accident reconstruction methods based on deformation energy are argued to be an increasingly valuable tool to the accident reconstructionist, provided reliable data, reasonable analysis techniques, and sound engineering judgement accompany their use. The evolution of the CRASH model of vehicle structural response and its corresponding stiffness coefficients are reviewed. It is concluded that the deformation energy for an accident vehicle can be estimated using the CRASH model provided that test data specific to the accident vehicle is utilized. Published stiffness coefficients for vehicle size categories are generally not appropriate. For the purpose of estimating vehicle deformation energy, a straight-forward methodology is presented which consists of applying the results of staged crash tests. The process of translating crush profiles to estimates of vehicle deformation energies and velocities is also discussed.
Technical Paper

Evaluation of Seat Back Strength and Seat Belt Effectiveness in Rear End Impacts

1987-11-01
872214
The issues of front seat energy absorption and seat belt effectiveness are investigated first through the review of prior experimental and analytical studies of rear impact dynamics. These prior studies indicate that the current energy absorption characteristic of seats is a safety benefit. Prior efforts to construct a rigidized seat indicate that such designs are likely to be impractical due to excessive weight and cost. Additionally, these studies indicate that seat belts provide an important safety function in rear impacts. Static tests of production seats were conducted, added to an existing data base, and analyzed to better understand the strength and energy absorbing characteristics of production seats. Crash test results from the New Car Assessment Program as well as earlier test programs were analyzed to describe the response of occupants and seats in rear impact and the protective function of seat belts in such collisions.
Technical Paper

Influence of Initial Length of Lap-Shoulder Belt on Occupant Dynamics-A Comparison of Sled Testing and MVMA–2D Modeling

1980-09-01
801309
The primary purpose of this parameter study was to carefully document occupant dynamics in well-controlled sled tests for comparison with simulated responses from the MVMA-2D analytical model. The test involved a Part 572 dummy exposed to a frontal deceleration while on a bucket seat and restrained by a lap-shoulder belt system. The length of belt webbing was incrementally increased from a snug configuration by as much as 30 cm. The addition of webbing increased the forward excursion, velocity, and acceleration of the head, chest, and hip without affecting the peak tension in the belt segments of the restraint system. Belt tension was identified as a poor measure of the horizontal load on the chest due to significant reaction forces in the lateral and vertical direction at the belt anchorages.
Technical Paper

Influence of Lateral Restraint on Occupant Interaction with a Shoulder Belt or Preinflated Air Bag in Oblique Impacts

1981-02-01
810370
Sled tests were conducted at farside oblique angles of 15°, 45°, and 75° with a Part 572 dummy restrained by a conventional driver lap/shoulder belt system or a preinflated driver inflatable restaint. Occupant dynamics were compared in similar tests where an inboard energy absorbing lateral restraint of the upper torso was or was not used. It can be concluded that the seat wing improves the control of the dummy's dynamics in oblique impacts by directing the occupant's motion more forward into the restraint system, thereby taking more advantage of the restraining potential of the shoulder belt or inflatable restraint in controlling the deceleration of the dummy and enhancing the benefit of the restraint system. However, additional factors associated with the use of a seat wing remain to be investigated including the effect of impact force on the occupant, interaction with out-of-position occupants and comfort/convenience.
Technical Paper

Influence of Seating Position on Dummy Responses with ABTS Seats in Severe Rear Impacts

2009-04-20
2009-01-0250
Objective: This study analyzes rear sled tests with a 95th% male and 5th% female Hybrid III dummy in various seating positions on ABTS (All Belt to Seat) seats in severe rear impact tests. Dummy interactions with the deforming seatback and upper body extension around the seat frame are considered. Methods: The 1st series involved an open sled fixture with a Sebring ABTS seat at 30 mph rear delta V. A 95th% Hybrid III dummy was placed in four different seating positions: 1) normal, 2) leaning inboard, 3) leaning forward and inboard, and 4) leaning forward and outboard. The 2nd series used a 5th% female Hybrid III dummy in a Grand Voyager body buck at 25 mph rear delta V. The dummy was leaned forward and inboard on a LeSabre ABTS or Voyager seat. The 3rd series used a 5th% female Hybrid III dummy in an Explorer body buck at 26 mph rear delta V. The dummy was leaned forward and inboard on a Sebring ABTS or Explorer seat.
Technical Paper

Influence of the Surrogate in Laboratory Evaluation of Energy-Absorbing Steering System

1984-10-01
841660
Various surrogates and responses are available for study of the impact performance of energy absorbing steering systems in the laboratory. The relative influence of the SAE J-944 body block, the Part 572 dummy, and the GM Hybrid III dummy and of the associated thoracic responses were investigated for steering assembly impact in a series of sled tests. Not only did response amplitudes differ among the surrogates but more importantly trends in impact performance associated with modifications of the steering assembly depended on the choice of surrogate and response. The Hybrid III dummy was judged the best of the tested surrogates for study of the steering system impact performance in the laboratory, based on its more humanlike construction, impact response and expanded measurement capacity.
Technical Paper

Laboratory Study of Factors Influencing the Performance of Energy Absorbing Steering Systems

1982-02-01
820475
The study was directed toward improving our understanding how postcrash column compression and steering wheel deformation relate to the driver interaction with an energy absorbing steering system during automotive collisions. Frontal sled tests conducted at 19–37 km/h investigated the Part 572 antropomorphic dummy interaction with a ball-sleeve column steering assembly over a range of column angles and surrogate postures. Neither column compression nor steering wheel deformation correlated with the mechanical severity of the test surrogate interaction with the steering system. The steering wheel deformed before the column compressed and the degree of wheel deformation strongly depended on the surrogate load distribution, the steering wheel being an important energy absorbing element.
Technical Paper

Neck Biomechanical Responses with Active Head Restraints: Rear Barrier Tests with BioRID and Sled Tests with Hybrid III

2002-03-04
2002-01-0030
Active head restraints are being used to reduce the risk of whiplash in rear crashes. However, their evaluation in laboratory tests can vary depending on the injury criteria and test dummy. The objective of this study was to conduct barrier tests with BioRID and sled tests with Hybrid III to determine the most meaningful responses related to whiplash risks in real-world crashes. This study involved: (1) twenty-four rear barrier tests of the Saab 9000, 900, 9-3 and 9-5 with two fully instrumented BioRID dummies placed in the front or rear seats and exposed to 24 and 48.3 km/h barrier impacts, and (2) twenty rear sled tests at 5-38 km/h delta V in three series with conventional, modified and SAHR seats using the Hybrid III dummy. A new target superposition method was used to track head displacement and rotation with respect to T1. Insurance data on whiplash claims was compared to the dummy responses.
Technical Paper

Occupant Responses in High-Speed Rear Crashes: Analysis of Government-Sponsored Tests

2008-04-14
2008-01-0188
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from FMVSS 301-type rear impact tests. Rear impact test data was obtained from NHTSA and consisted of dummy responses, test observations, photos and videos. The data was organized in four test series: 1) NCAP series of 30 New Car Assessment Program tests carried out at 35 mph with 1979-1980 model year vehicles, 2) Mobility series of 14 FMVSS 301 tests carried out at 30 mph with 1993 model year vehicles, 3) 301 MY 95+ series of 79 FMVSS 301 tests carried out at 30 mph with 1995-2005 model year vehicles and 4) ODB series of 17 Offset Deformable Barrier tests carried out at 50 mph with a 70% overlap using 1996-1999 model year vehicles. The results indicate very good occupant performance in yielding seats in the NCAP, Mobility and 301 MY 95+ test series.
Technical Paper

Performance of a Shoulder Belt and Knee Restraint in Barrier Crash Simulations

1979-02-01
791006
Previous pendulum impact tests have shown that knee joint injuries and tibial-fibular fractures may occur when loads are directed against the lower leg rather than directly against the femur in the knee. In order to further improve our understanding of lower extremity restraint mechanics, simulated frontal barrier crash experiments were conducted with unembalmed human cadavers and an anthropomorphic dummy restrained by a two-point shoulder belt. In the first test, an experimental bolster was specifically positioned so that the cadaver's lower leg would strike the bolster, thus inducing restraining loads entirely below the knee joint. The analysis of occupant kinematics showed that the flexed knee rode over and forward of the low-positioned bolster. Restraint induced considerable shearing load across the knee joint. Bolster measurements indicated a peak load of approximately 4.0 kN per leg which resulted in a contralateral central tear of the posterior cruciate ligaments.
Technical Paper

Rear Impact Tests of Starcraft-Type Seats with Out-of-Position and In-Position Dummies

2011-04-12
2011-01-0272
Objective: This study analyzed available rear impact sled tests with Starcraft-type seats that use a diagonal belt behind the seatback. The study focused on neck responses for out-of-position (OOP) and in-position seated dummies. Methods: Thirteen rear sled tests were identified with out-of-position and in-position 5 th , 50 th and 95 th Hybrid III dummies in up to 47.6 mph rear delta Vs involving Starcraft-type seats. The tests were conducted at Ford, Exponent and CSE. Seven KARCO rear sled tests were found with in-position 5 th and 50 th Hybrid III dummies in 21.1-29.5 mph rear delta Vs involving Starcraft-type seats. In all of the in-position and one of the out-of-position series, comparable tests were run with production seats. Biomechanical responses of the dummies and test videos were analyzed.
Technical Paper

Rear Stiffness Coefficients Derived from Barrier Test Data

1991-02-01
910120
Rear impacts in the crash test data base compiled by the NHTSA are analyzed and compared to the CRASH3 rear stiffness coefficients. The CRASH3 values do not represent the test data adequately. This is because the values were derived from limited data, and because some of the rear moving barrier test data were miscoded as fixed barrier tests. A review of the larger NHTSA data base does not support the CRASH3 assumption that vehicles of similar size (wheelbase) have similar rear stiffness characteristics. Therefore, it is important when reconstructing individual accidents to use crash test data specific to the vehicles involved. Repeated rear fixed barrier test data on four vehicles are analyzed to study the data trend at speeds below and above the NHTSA test data. Constant stiffness and constant force models are compared and a combination of the two is shown to fit available test data.
Technical Paper

Rear-Seat Occupant Responses in NHTSA Rear Crash Tests

2018-04-03
2018-01-1330
This study analyzed FMVSS 301 rear impact tests with an instrumented rear-seat dummy. NHTSA conducted 15 FMVSS 301 rear crash tests with an instrumented and belted 50th Hybrid III dummy in the rear seat. In series 1, there were three repeat tests with the Jeep Liberty and two others, but no onboard camera view. In series 2, there were 8 tests with 2003-2005 MY (model year) vehicles that had rear head restraints. In series 3, there were two tests with 2004-2005 MY vehicles that did not have rear head restraints. There was an onboard camera view of the rear occupant in series 2 and 3. The dummy responses were evaluated and compared to relevant IARVs (injury assessment reference values). Based on the HRMD, the average height of the rear head restraints was 80.4 ± 3.4 cm (31.6″ ± 1.3″) above the H-point. In series 1, the delta V was 24.4 ± 2.0 km/h (15.2 ± 1.3 mph).
Technical Paper

Response of Out-of-Position Dummies in Rear Impact

1994-03-01
941055
Field accident data suggest that a significant number of occupants involved in rear impacts may be positioned at impact other than in the “Normal Seated Position” - the optimum restraint configuration that has been used almost exclusively in published seat testing. Pre-impact vehicle acceleration from braking, swerving, or a prior frontal impact could cause an occupant to be leaning forward at the instant of the collision, creating a situation where the vehicle “ride-up” potential would be limited. No rear impact tests involving yielding, production-type seats with forward-leaning dummies are found in the literature. Thirty rear-impact sled tests with a forward-leaning, “Out-of-Position” Hybrid III dummy are presented. Tests were performed with a calibrated seat set in either the rigidified or yielding configuration and with the dummy either unbelted or restrained by a production three-point belt system. Test speeds ranged from 5 to 20 mph.
Technical Paper

Restraint of a Belted or Unbelted Occupant by the Seat in Rear-End Impacts

1992-11-01
922522
This sled test series involved occupant loading of the seat in rear crashes of 4.3-8.3 m/s (9.6-18.5 mph). The tests were conducted in the early 1980s and involved an unbelted or lap-shoulder belted Part 572 dummy in rear and oblique rear impacts. The research is reported today to provide comparative data for the record and serves as a control benchmark for more current technologies and safety research methodologies on seat performance in rear crashes. Safety belts improved occupant retention on the seat primarily by the lap belt reducing the upward and rearward movement of the pelvis. Tests were also conducted on the mechanisms for energy absorption by seatback deflection.
Book

Role of the Seat in Rear Crash Safety

2002-10-25
Role of the Seat in Rear Crash Safety addresses the historic debate over seatback stiffness, energy absorbing yielding, occupant retention and whiplash prevention; and it provides a scientific foundation for the direction GM pursued in the development and validation of future seat designs. It also describes the multi-year research study into the role of the seat in rear crash safety - first by addressing the need for occupant retention in the more severe rear crashes; and then by addressing the needs for an adequately positioned head restraint and changes in the compliance of the seatback to lower the risks of the whiplash in low-speed crashes.
X