Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Journal Article

A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency

2017-03-28
2017-01-0722
Growing awareness about CO2 emissions and their environmental implications are leading to an increase in the importance of thermal efficiency as criteria to design internal combustion engines (ICE). Heat transfer to the combustion chamber walls contributes to a decrease in the indicated efficiency. A strategy explored in this study to mitigate this efficiency loss is to promote low swirl conditions in the combustion chamber by using low swirl ratios. A decrease in swirl ratio leads to a reduction in heat transfer, but unfortunately, it can also lead to worsening of combustion development and a decrease in the gross indicated efficiency. Moreover, pumping work plays also an important role due to the effect of reduced intake restriction to generate the swirl motion. Current research evaluates the effect of a dedicated injection strategy to enhance combustion process when low swirl is used.
Technical Paper

A Methodology for the Design of Engine Cooling Systems in Standalone Applications

2010-04-12
2010-01-0325
In this paper, a methodology for the design process of engine cooling systems is presented, which is based on the interaction among three programs: a code developed for radiator sizing and rating, a 3D commercial code used for the air circuit modeling, and a 1D commercial code used for the modeling and simulation of the complete engine cooling system. The aim of the developed methodology, in addition to ensure the system thermal balance, is the improvement of the design process of the cooling system itself, while shortening the development times, in non-automotive applications. An application to the design of a locomotive engine cooling system is presented. The system designed has been assembled and tested, showing the validity of the methodology, as well as the compliance of the designed system with the initially specified thermo-hydraulic constraints and requirements.
Journal Article

A New Tool to Perform Global Energy Balances in DI Diesel Engines

2014-04-01
2014-01-0665
The generalization of exhaust aftertreatment systems along with the growing awareness about climate change is leading to an increasing importance of the efficiency over other criteria during the design of reciprocating engines. Using experimental and theoretical tools to perform detailed global energy balance (GEB) of the engine is a key issue for assessing the potential of different strategies to reduce consumption. With the objective of improving the analysis of GEB, this paper describes a tool that allows calculating the detailed internal repartition of the fuel energy in DI Diesel engines. Starting from the instantaneous in-cylinder pressure, the tool is able to describe the different energy paths thanks to specific submodels for all the relevant subsystems.
Journal Article

A Novel Methodology for the Definition of an Optimized Immersion Cooling Fluid by Means of a Lumped Electro-Thermal Battery Pack Model

2023-04-11
2023-01-0507
This article proposes a novel methodology for the definition of an optimized immersion cooling fluid for lithium-ion battery applications aimed to minimize maximum temperature and temperature gradient during most critical battery operations. The battery electric behavior is predicted by a first order equivalent circuit model, whose parameters are experimentally determined. Thermal behavior is described by a nodal network, assigning to each node thermal characteristics. Hence, the electro-thermal model of a battery is coupled with a thermal management model of an immersion cooling circuit developed in MATLAB/Simulink. A first characterization of the physical properties of an optimal dielectric liquid is obtained by means of a design of experiment. The optimal values of density, thermal conductivity, kinematic viscosity, and specific heat are defined to minimize the maximum temperature and temperature gradient during a complete discharge of the battery at 2.5C.
Technical Paper

A Simple Approach for the Estimation of the Exhaust Noise Source at the Valves

2019-09-09
2019-24-0174
Exhaust noise emission is the result of the propagation of pressure perturbations along the exhaust line, whose primary source is the instantaneous mass flow rate across the exhaust valves. In this paper, a model for the estimation of this magnitude is presented, which has two main objectives: the first one is to provide a representation of the engine as an exhaust noise source as independent as possible on the exhaust system; the second one to allow for the estimation of the exhaust mass flow in such cases where the full set of data required by a conventional gas-dynamic simulation is not available. The model presented uses a reduced set of geometrical and operation data, which can be either representative for a given engine family, or even target values for an engine still not fully defined.
Technical Paper

A State of Health Estimation Technique based on a Temperature and Ah Throughput Dependency Model of the Capacity Fade

2023-08-28
2023-24-0158
This work proposes a novel approach for state of health estimation of lithium-ion cells by developing a capacity fade model with temperature and Ah throughput dependencies. Two accelerated life cycle testing datasets are used for model calibration: a multi discharge rate dataset of an NMC/graphite cylindrical cell and a multi temperature dataset for an LCO/graphite pouch cell. The multi discharge rate dataset has been recorded at 23 °C and for 4 discharge-rates (C/4, C/2, 1C and 3C). The multi-temperature dataset considers the accelerated ageing of the cells at 4 temperatures (10, 25, 45 and 60 °C). An Arrhenius model is chosen for describing the temperature dependency while a power law model is chosen for cycle (Ah throughput) dependency. The model shows a good agreement with experimental data in each analyzed condition, allowing a precise description of the capacity degradation over time.
Journal Article

Computational Fluid Dynamics Calculations of Turbocharger's Bearing Losses

2010-05-05
2010-01-1537
Fuel consumption in internal combustion engines and their associated CO2 emissions have become one of the major issues facing car manufacturers everyday for various reasons: the Kyoto protocol, the upcoming European regulation concerning CO2 emissions requiring emissions of less than 130g CO2/km before 2012, and customer demand. One of the most efficient solutions to reduce fuel consumption is to downsize the engine and increase its specific power and torque by using turbochargers. The engine and the turbocharger have to be chosen carefully and be finely tuned. It is essential to understand and characterise the turbocharger's behaviour precisely and on its whole operating range, especially at low engine speeds. The characteristics at low speed are not provided by manufacturers of turbochargers because compressor maps cannot be achieve on usual test bench.
Technical Paper

Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model

2018-04-03
2018-01-0160
To face the current challenges of the automotive industry, there is a need for computational models capable to simulate the engine behavior under low-temperature and low-pressure conditions. Internal combustion engines are complex and have interconnected systems where many processes take place and influence each other. Thus, a global approach to engine simulation is suitable to study the entire engine performance. The circuits that distribute the hydraulic fluids -liquid fuels, coolants and lubricants- are critical subsystems of the engine. This work presents a 0D model which was developed and set up to make possible the simulation of hydraulic circuits in a global engine model. The model is capable of simulating flow and pressure distributions as well as heat transfer processes in a circuit.
Technical Paper

Dilution Interest on Turbocharged SI Engine Combustion

2003-03-03
2003-01-0629
This paper presents a prospective combustion study about dilution effects on turbocharged SI engine at full load. It proposes a comparative analysis between lean burn and cooled exhaust gas recirculation (EGR) operation as knock improvement artifice in substitute of enrichment. The study was led on a four cylinder 2L engine on stationary test bench. A specific EGR circuit was designed in order to achieve high control of the temperature and mass flow of the recirculated gas. Thanks to instantaneous pressure cylinder transducers, a combustion analysis was carried out using an home-made code. 1-D simulations (WAVE code) were used to complete the analysis on volumetric efficiency and turbocharger behaviour. A real advantage of cooled EGR was observed in the study compared to lean burn or enrichment in terms of performance, heat exchange and specific fuel consumption.
Technical Paper

Energy Balance During the Warm-Up of a Diesel Engine

2014-04-01
2014-01-0676
In the present work, an automotive Diesel engine has been experimentally tested under a New European Driving Cycle (NEDC) with the aim of getting experimental plots of time dependent partitioning of energy injected during the warm-up process. An additional objective of this work is to assess the energy recovery capacity installed in the engine, i.e., to assess how much of the energy that leaves the engine with the exhaust gasses and the coolant is being employed. With this target, mean values of some parameters (intake and exhaust pressures and temperatures, coolant flow and coolant inlet and outlet temperatures, engine speed and torque) together with instantaneous variables (crankshaft angle, in-cylinder gas pressure, intake and exhaust mass flows) were continuously recorded during the warm-up of the engine. As a result of the work, the dynamics of the thermal balance of the Diesel engine under transient road conditions during the warm-up period was obtained.
Technical Paper

Evaluation of EGR Effect on the Global Energy Balance of a High Speed DI Diesel Engine

2016-04-05
2016-01-0646
Regulated emissions and fuel consumption are the main constraints affecting internal combustion engine (ICE) design. Over the years, many techniques have been used with the aim of meeting these limitations. In particular, exhaust gas recirculation (EGR) has proved to be an invaluable solution to reduce NOx emissions in Diesel engines, becoming a widely used technique in production engines. However, its application has a direct effect on fuel consumption due to both the changes in the in-cylinder processes, affecting indicated efficiency, and also on the air management. An analysis, based on the engine Global Energy Balance, is presented to thoroughly assess the behavior of a HSDI Diesel engine under variable EGR conditions at different operating points. The tests have been carried out keeping constant the conditions at the IVC and the combustion centering.
Journal Article

General Procedure for the Determination of Heat Transfer Properties in Small Automotive Turbochargers

2014-10-13
2014-01-2857
These days many research efforts on internal combustion engines are centred on optimising turbocharger matching and performance on the engine. In the last years a number of studies have pointed out the strong effect on turbocharger behaviour of heat transfer phenomena. The main difficulty for taking into account these phenomena comes from the little information provided by turbocharger manufacturers. In this background, Original Engine Manufacturers (OEM) need general engineering tools able to provide reasonably precise results in predicting the mentioned heat transfer phenomena. Therefore, the purpose of this work is to provide a procedure, applicable to small automotive turbochargers, able to predict the heat transfer characteristics that can be used in a lumped 1D turbocharger heat transfer model. This model must be suitable to work coupled to whole-engine simulation codes (such as GT-Power or Ricardo WAVE) for being used in global engine models by the OEM.
Journal Article

Importance of Heat Transfer Phenomena in Small Turbochargers for Passenger Car Applications

2013-04-08
2013-01-0576
Nowadays turbocharging the internal combustion engine has become a key point in both the reduction of pollutant emissions and the improvement of engine performance. The matching between turbocharger and engine is difficult; some of the reasons are the highly unsteady flow and the variety of diabatic and off-design conditions the turbocharger works with. In present paper the importance of the heat transfer phenomena inside small automotive turbochargers will be analyzed. These phenomena will be studied from the point of view of internal heat transfer between turbine and compressor and with a one-dimensional approach. A series of tests in a gas stand, with steady and pulsating hot flow in the turbine side, will be modeled to show the good agreement in turbocharger enthalpies prediction. The goodness of the model will be also shown predicting turbine and compressor outlet temperatures.
Journal Article

Importance of Mechanical Losses Modeling in the Performance Prediction of Radial Turbochargers under Pulsating Flow Conditions

2013-04-08
2013-01-0577
This work presents a study to characterize and quantify the mechanical losses in small automotive turbocharging systems. An experimental methodology to obtain the losses in the power transmission between the turbine and the compressor is presented. The experimental methodology is used during a measurement campaign of three different automotive turbochargers for petrol and diesel engines with displacements ranging from 1.2 l to 2.0 l and the results are presented. With this experimental data, a fast computational model is fitted and used to predict the behaviour of mechanical losses during stationary and pulsating flow conditions, showing good agreement with the experimental results. During pulsating flow conditions, the delay between compressor and turbine makes the mechanical efficiency fluctuate. These fluctuations are shown to be critical in order to predict the turbocharger behaviour.
Technical Paper

Influence of Characterising Materials Thicknesses on the Thermal Response of Cylindrical Battery Cells

2023-08-28
2023-24-0124
Rising concern towards environment and decarbonization has increased the demand of EVs. However, one of the major challenges for these vehicles is to achieve the same driving ranges as that of ICEs. This can be attained by increasing the power of cells without altering their sizes; conversely, this has important effects on the cell thermal behaviour. The focus of this paper is to analyse the impact of changing the characterizing materials thicknesses of collectors and electrodes of a cylindrical cell on its thermal response and to determine an optimal configuration. The CFD software considered to conduct this research uses the equivalent circuit model (ECM) to represent a cell and requires material physical properties to calculate the thermal response. In the calculations presented, resistance, capacitance, and Open Circuit Voltage (OCV) needed for the ECM are obtained from experimental measurements.
Technical Paper

Modelling and Measurement of the Transient Response of a Turbocharged SI Engine

2005-04-11
2005-01-0691
The downsizing of spark ignition engines should be an issue to decrease the consumption and to fulfil the ACEA commitment, i.e. 140 g CO2/km in 2008 and maybe 120 g/km in 2012. To achieve very low specific fuel consumption, the use of very downsized engines should be a solution. However, it is well known that one problem with such engines, that means very small turbocharged engines with high specific power (up to 100 kW/l), will be the turbo lag [5-6]. Different ways are possible to avoid it: some changes in intake layout, exhaust manifolds, turbo inertia, valve timings can be considered, or more sophisticated systems (such as electrically assisted compressor [3], volumetric compressor …) can be envisaged. To classify the interest of such solutions, it is very useful to compute their transient behaviour and, thus, to have accurate models to predict their impact under transient conditions like tip-in at constant speed but also tip-in on a vehicle (varying speed conditions).
Technical Paper

Numerical Estimation of Wiebe Function Parameters Using Artificial Neural Networks in SI Engine

2021-04-06
2021-01-0379
In modeling an Internal Combustion Engine, the combustion sub-model plays a critical role in the overall simulation of the engine as it provides the Mass Fraction Burned (MFB). Analytically, the Heat Release Rate (HRR) can be obtained using the Wiebe function, which is nothing more than a mathematical formulation of the MFB. The mentioned function depends on the following four parameters: efficiency parameter, shape factor, crankshaft angle, and duration of the combustion. In this way, the Wiebe function can be adjusted to experimentally measured values of the mass fraction burned at various operating points using a least-squares regression, and thus obtaining specific values for the unknown parameters. Nevertheless, the main drawback of this approach is the requirement of testing the engine at a given engine load/speed condition. Furthermore, the main objective of this study is to propose a predictive model of the Wiebe parameters for any operating point of the tested SI engine.
Journal Article

Numerical Study of the Maximum Impact on Engine Efficiency When Insulating the Engine Exhaust Manifold and Ports during Steady and Transient Conditions

2020-06-30
2020-37-0002
In the present work, a study about the impact on engine performance, fuel consumption and turbine inlet and outlet temperatures with the addition of thermal insulation to the exhaust ports, manifold and pipes before the turbocharger of a 1.6L Diesel engine is presented. First, a 0D/1D model of the engine was developed and thoroughly validated by means of an extensive testing campaign. The validation was performed by means of steady state and transient running conditions and in two different room temperatures: 20°C and -7°C. Once the validation was complete, in order to evaluate the maximum gain by means of insulating materials, the exhaust air path before the turbine was simulated as adiabatic. Results showed that the thermal insulation proved to have a great potential in regard to T4 increase that would lead to a reduction of the warm up time of the aftertreatment systems. However, its impact on engine efficiency was limited in both steady and transient conditions.
Technical Paper

On the Design of Heat Exchangers for Altitude Simulators

2021-04-06
2021-01-0388
Altitude simulators for internal combustion engines are broadly used in order to simulate different atmospheric pressure and temperatures on a test bench. One of the main problems of these devices is their outlet temperature and in order to control it, at least one heat exchanger is needed. A methodology to define, select and analyses the best heat exchanger that fulfill the requirements is presented. The methodology combines CFD and 0D models with experimental test. The combination of these tools allows to adjust both the 0D and the CFD models. The adjusted 0D model will be used to perform parametric analysis that will help to select the best geometrical combinations considering heat transfer and pressure losses while the CFD model will help to find possible local deficiencies on the designed Heat Exchanger and, therefore, try to improve it.
Technical Paper

Transient response of a Turbocharged SI Engine with an electrical boost pressure supply

2003-05-19
2003-01-1844
This paper deals with the transient response of a highly turbocharged gasoline engine. This downsized engine should behave as a naturally aspirated engine when the throttle is suddenly opened. However, a turbo lag occurs and this phenomenon is of large importance for the vehicle acceleration and driver sensations. To reduce turbo lag effects, an electrical compressor (E-booster) was used to improve the main compressor and engine responses. The study was led on a three cylinder 1L turbo-charged engine. 1-D simulations (WAVE code) with a MATLAB-SIMULINK coupling were used to calculate the engine and vehicle transient responses. The vehicle, turbocharger and E-booster characteristics were simulated by the model. Second to third gear wide open throttle accelerations, varying engine loads at constant speed were also simulated. The calculations give important results like E-booster electrical consumption, and focus on the most significant parameters.
X