Refine Your Search

Topic

Author

Search Results

Technical Paper

A Flame Sheet Model for NO Production in Diesel Combustion Simulation

1998-10-19
982586
A flame sheet model for NO production in multi-dimensional diesel simulation has been developed. It explicitly addresses that because of the finite computational cell resolution, the local temperature within the diffusion flame is substantially higher than the cell averaged temperatures. Thus using the latter values will under-predict NO production. The methodology uses a flame sheet library for the NO production. Computations using this model are compared to experimental data for a Cummins N14 engine. The results show that the NO production is predominantly from within the flame sheets; the bulk production accounts for less than 5% of the total production.
Technical Paper

A Model for Converting SI Engine Flame Arrival Signals into Flame Contours

1995-02-01
950109
A model which converts flame arrival times at a head gasket ionization probe, used in a spark-ignition engine, into flame contours has been developed. The head gasket was manufactured at MIT using printed circuit board techniques. It has eight electrodes symmetrically spaced around the circumference (top of cylinder liner) and it replaces the conventional head gasket. The model is based on engine flame propagation rate data taken from the literature. Data from optical studies of S.I. engine combustion or studies utilizing optical fiber or ionization probe diagnostics were analyzed in terms of the apparent flame speed and the entrainment speed (flame speed relative to the fluid ahead of the flame). This gives a scaling relationship between the flame speed and the mass fraction burned which is generic and independent of the chamber shape.
Technical Paper

A Model for Flame Initiation and Early Development in SI Engine and its Application to Cycle-to-Cycle Variations

1994-10-01
942049
This paper uses a model which calculates the flame kernel formation and its early development in spark ignition engines to examine the causes of cycle-to-cycle combustion variations. The model takes into account the primary physical factors influencing flame development. The spark-generated flame kernel size and temperature required to initialize the computation are completely determined by the breakdown energy and the heat conduction from burned region to unburned region. In order to verify the model, the computation results are compared with high-speed Schlieren photography flame development data from an operating spark-ignition engine; they match remarkably well with each other at all test conditions. For the application of this model to the study of cycle-to-cycle variation of the early stage of combustion, additional input is required.
Technical Paper

A New Approach to Ethanol Utilization: High Efficiency and Low NOx in an Engine Operating on Simulated Reformed Ethanol

2008-10-06
2008-01-2415
The use of hydrogen as a fuel supplement for lean-burn engines at higher compression ratios has been studied extensively in recent years, with good promise of performance and efficiency gains. With the advances in reformer technology, the use of a gaseous fuel stock, comprising of substantially higher fractions of hydrogen and other flammable reformate species, could provide additional improvements. This paper presents the performance and emission characteristics of a gas mixture of equal volumes of hydrogen, CO, and methane. It has recently been reported that this gas mixture can be produced by reforming of ethanol at comparatively low temperature, around 300C. Experiments were performed on a 1.8-liter passenger-car Nissan engine modified for single-cylinder operation. Special pistons were made so that compression ratios ranging from CR= 9.5 to 17 could be used. The lean limit was extended beyond twice stoichiometric (up to lambda=2.2).
Technical Paper

A Rapid Compression Machine Study of the Influence of Charge Temperature on Diesel Combustion

1987-02-01
870587
Difficulties in the starting and operation of diesel engines at low temperatures are an important consideration in their design and operation, and in selection of the fuels for their use. Improvements in operation have been achieved primarily through external components of the engine and associated subsystems. A Rapid Compression Machine (RCM) has been modified to operate over a wide range of temperatures (−20°C to 100°C). It is used to isolate the combustion chamber in an environment in which all significant parameters are carefully defined and monitored. The influence of temperature and cetane number on the ignition and combustion processes are analyzed. Examination of the combustion characteristics show that temperature is by far the most influential factor affecting both ignition delay and heat release profiles. Cetane number (ASTM D-613) is not found to be a strong indicator of ignition delay for the conditions investigated.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

A Study of Flame Development and Engine Performance with Breakdown Ignition Systems in a Visualization Engine

1988-02-01
880518
A conventional coil ignition system and two breakdown ignition systems with different electrode configurations were compared in M.I.T.'s transparent square piston engine. The purpose was to gain a deeper understanding of how the breakdown and glow discharge phases affect flame development and engine performance. The engine was operated with a standard intake valve and with a shrouded intake valve to vary the characteristic burning rate of the engine. Cylinder pressure data were used to characterize the ignition-system performance. A newly developed schlieren system which provides two orthogonal views of the developing flame was used to define the initial flame growth process. The study shows that ignition systems with higher breakdown energy achieve a faster flame growth during the first 0.5 ms after spark onset for all conditions studied.
Technical Paper

An Investigation of Gasoline Engine Knock Limited Performance and the Effects of Hydrogen Enhancement

2006-04-03
2006-01-0228
A set of experiments was performed to investigate the effects of relative air-fuel ratio, inlet boost pressure, and compression ratio on engine knock behavior. Selected operating conditions were also examined with simulated hydrogen rich fuel reformate added to the gasoline-air intake mixture. For each operating condition knock limited spark advance was found for a range of octane numbers (ON) for two fuel types: primary reference fuels (PRFs), and toluene reference fuels (TRFs). A smaller set of experiments was also performed with unleaded test gasolines. A combustion phasing parameter based on the timing of 50% mass fraction burned, termed “combustion retard”, was used as it correlates well to engine performance. The combustion retard required to just avoid knock increases with relative air-fuel ratio for PRFs and decreases with air-fuel ratio for TRFs.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Analysis of Fuel Behavior in the Spark-Ignition Engine Start-Up Process

1995-02-01
950678
An analysis method for characterizing fuel behavior during spark-ignition engine starting has been developed and applied to several sets of start-up data. The data sets were acquired from modern production vehicles during room temperature engine start-up. Two different engines, two control schemes, and two engine temperatures (cold and hot) were investigated. A cycle-by-cycle mass balance for the fuel was used to compare the amount of fuel injected with the amount burned or exhausted as unburned hydrocarbons. The difference was measured as “fuel unaccounted for”. The calculation for the amount of fuel burned used an energy release analysis of the cylinder pressure data. The results include an overview of starting behavior and a fuel accounting for each data set Overall, starting occurred quickly with combustion quality, manifold pressure, and engine speed beginning to stabilize by the seventh cycle, on average.
Technical Paper

Analysis of Hydrocarbon Emissions Mechanisms in a Direct Injection Spark-Ignition Engine

1983-02-01
830587
The direct injection spark-ignition engine is the only internal combustion engine with the potential to equal the efficiency of the diesel and to tolerate a wide range of fuel types and fuel qualities without deterioration of performance. However, this engine has low combustion efficiency and excessive hydrocarbon emissions when operating at light load. In this paper, potential sources of hydrocarbon emissions during light load operation are postulated and analyzed. The placement of fuel away from the primary combustion process in conjunction with a lack of secondary burnup are isolated as important hydrocarbon emissions mechanisms. Analyses show that increasing cylinder gas temperatures can improve secondary burnup of fuel which would reduce hydrocarbon emissions. Practical means to achieve this include higher compression ratio and use of ceramic parts in the combustion chamber.
Journal Article

Analysis of NOx Emissions during Crank-Start and Cold Fast-Idle in a GDI Engine

2017-03-28
2017-01-0796
The NOx emissions during the crank-start and cold fast-idle phases of a GDI engine are analyzed in detail. The NOx emissions of the first 3 firing cycles are studied under a wide set of parameters including the mass of fuel injected, start of injection, and ignition timing. The results show a strong dependence of the NOx emissions with injection timing; they are significantly reduced as the mixture is stratified. The impact of different valve timings on crank-start NOx emissions was analyzed. Late intake and early exhaust timings show similar potential for NOx reduction; 26-30% lower than the baseline. The combined strategy, resulting in a large symmetric negative valve overlap, shows the greatest reduction; 59% lower than the baseline. The cold fast-idle NOx emissions were studied under different equivalence ratios, injection strategies, combustion phasing, and valve timings. Slightly lean air-fuel mixtures result in a significant reduction of NOx.
Technical Paper

Analysis of the Flow and Combustion Processes of a Three-Valve Stratified Charge Engine with a Small Prechamber

1974-02-01
741170
The flow and combustion processes of a three-valve, stratified charge engine with small prechamber are examined for exhaust emissions. The exhaust emissions from a single-cylinder version of this engine are shown to depend on the internal flow processes as well as mixture supply stoichiometry. A theoretically-based simulation model of the engine flow and combustion processes is described. Model predictions are compared with time-resolved prechamber air-fuel ratio measurements made during intake and compression strokes. These comparisons are used to illustrate and describe the complex flow phenomena which take place in this engine. The combustion process is then examined with the aid of calculations using the simulation model. The complexity of the combustion process is illustrated by showing that, in addition to burned gas temperatures, the cylinder and prechamber burned gas air-fuel ratios change with time.
Journal Article

Assessment of Gasoline Direct Injection Engine Cold Start Particulate Emission Sources

2017-03-28
2017-01-0795
The gasoline direct injection (GDI) engine particulate emission sources are assessed under cold start conditions: the fast idle and speed/load combinations representative of the 1st acceleration in the US FTP. The focus is on the accumulation mode particle number (PN) emission. The sources are non-fuel, combustion of the premixed charge, and liquid fuel film. The non-fuel emissions are measured by operating the engine with premixed methane/air or hydrogen/air. Then the PN level is substantially lower than what is obtained with normal GDI operation; thus non-fuel contribution to PN is small. When operating with stoichiometric premixed gasoline/air, the PN level is comparable to the non-fuel level; thus premixed-stoichiometric mixture combustion does not significantly generate particulates. For fuel rich premixed gasoline/air, PN increases dramatically when lambda is less than 0.7 to 0.8.
Technical Paper

Characterization of Knock in a Spark-Ignition Engine

1989-02-01
890156
Spark-ignition engine knock was characterized in terms of when during the engine cycle and combustion process knock occurred and its magnitude or intensity. Cylinder pressure data from a large number of successive individual cycles were generated from a single-cylinder engine of hemispherical chamber design over a range of operating conditions where knock occurred in some or all of these cycles. Mean values and distributions of following parameters were quantified: knock occurrence crank angle, knock intensity, combustion rate and the end-gas thermodynamic state. These parameters were determined from the cylinder pressure data on an individual cycle basis using a mass-burn-rate analysis. The effects of engine operating variables on these parameters were studied, and correlations between these parameters were examined.
Technical Paper

Combustion Characterization in a Direct-Injection Stratified-Charge Engine and Implications on Hydrocarbon Emissions

1989-09-01
892058
An experimental study was conducted on a direct-injection stratified-charge (DISC) engine incorporating a combustion process similar to the Texaco Controlled Combustion System and operated with gasoline. Analysis of the injected fuel flow and the heat release showed that the combustion process was characterized by three distinct phases: fuel injection and distribution around the piston bowl, flame propagation through the stratified fuel-air mixture, and mixing-controlled burn-out with the heat-release rate proportional to the amount of unburned fuel in the combustion chamber. This characterization was consistent with previous visualization studies conducted on rapid-compression machines with similar configurations. Experiments with varied injection timing, spark plug location, and spark timing showed that the combustion timing relative to injection was critical to the hydrocarbon emissions from the engine.
Technical Paper

Combustion Optimization in a Hydrogen-Enhanced Lean-Burn SI Engine

2005-04-11
2005-01-0251
As part of ongoing research on hydrogen-enhanced lean burn SI engines, this paper details an experimental combustion system optimization program. Experiments focused on three key areas: the ignition system, in-cylinder charge motion produced by changes in the inlet ports, and uniformity of fuel-air mixture preparation. Hydrogen enhancement is obtained with a H2, CO, N2 mixture produced by a fuel reformer such as the plasmatron. The ignition system tests compared a standard inductive coil scheme against high-energy discharge systems. Charge motion experiments focused on the impact of different flow and turbulence patterns generated within the cylinder by restrictor plates at the intake port entrance, as well as novel inlet flow modification cones. The in-cylinder fluid motion generated by each configuration was characterized using swirl and tumble flow benches. Mixture preparation tests compared a standard single-hole pintle port fuel injector against a fine atomizing 12-hole injector.
Technical Paper

Computer Models For Evaluating Premixed and Disc Wankel Engine Performance

1986-03-01
860613
This paper describes two types of computer models which have been developed to analyze the performance of both premixed-charge and direct-injection stratified-charge Wankel engines. The models are based on a thermodynamic analysis of the contents of the engine's chambers. In the first type of model, the rate of combustion is predicted from measured chamber pressure by use of a heat release analysis. The analysis includes heat transfer to the chamber walls, work transfer to the rotor, enthalpy loss due to flows into crevices and due to leakage flows into adjacent chambers, and enthalpy gain due to fuel injection. The second type of computer model may be used to predict the chamber pressure during a complete engine cycle. From the predicted chamber pressure, the overall engine performance parameters are calculated. The rate of fuel burning as an algebraic function of crank angle is specified.
Journal Article

Cycle-by-Cycle Analysis of Cold Crank-Start in a GDI Engine

2016-04-05
2016-01-0824
The first 3 cycles in the cold crank-start process at 20°C are studied in a GDI engine. The focus is on the dependence of the HC and PM/PN emissions of each cycle on the injection strategy and combustion phasing of the current and previous cycles. The PM/PN emissions per cycle decrease by more than an order of magnitude as the crank-start progresses from the 1st to the 3rd cycle, while the HC emissions stay relatively constant. The wall heat transfer, as controlled by the combustion phasing, during the previous cycles has a more significant influence on the mixture formation process for the current cycle than the amount of residual fuel. The results show that the rise in HC emissions caused by the injection spray interacting with the intake valves and piston crown is reduced as the cranking process progresses. Combustion phasing retard significantly reduces the PM emission. The HC emissions, however, are relatively not sensitive to combustion phasing in the range of interest.
Technical Paper

Design and Demonstration of a Spark Ignition Engine Operating in a Stratified-EGR Mode

1998-02-23
980122
This paper describes the development of a spark ignition engine operating in a stratified-EGR mode at part load. The concept is to reduce the pumping loss with high levels of EGR while maintaining stable combustion via charge stratification. Since the engine operates stoichiometrically, the ability to control NOx emissions by the three-way catalyst is retained. The configuration of introducing the stoichiometric fresh mixture to the center portion of the combustion chamber with the EGR gas on the two sides is visualized in a transparent engine using planar laser-induced fluorescence (PLIF) and Mie scattering. Visualization results showed that the stratification between air/fuel mixture and EGR gas was relatively well established during the intake stroke. There was, however, significant mixing in the late part of the compression stroke.
X