Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Clarification of Fuel and Oil Flow Behavior Around the Piston Rings of Internal Combustion Engines – Simultaneous analysis of oil flow behavior and oil emissions during transient operation

2023-09-29
2023-32-0045
Future demands for modern emission free drivetrains using hydrogen or liquid e-fuels also necessitate a fundamental reduction in oil emissions. Entry of lubrication oil into the combustion chamber can lead to pre-combustion phenomena (LSPI) in downsizing or hydrogen engines and is a cause of particle emissions, which play a significant role especially if fuel related particle emissions are already low. A fundamental understanding of the oil film behavior on the piston assembly and cylinder liner surface are crucial to avoid oil ingress into the combustion chamber. The processes involved take place mainly around the piston group. In particular, the area of the piston rings with the prevailing pressure and temperature conditions as well as the component geometries has a high influence on the exchange of media between the crankcase and combustion chamber. The objective of this paper is to increase the understanding of the processes leading to oil ingress into the combustion chamber.
Technical Paper

Clarification of Fuel and Oil Flow Behaviour Around the Piston Rings of Internal Combustion Engines: Visualization of Oil and Fuel Behaviour by Photochromism in Gasoline Engine Under Transient Operating Conditions

2023-09-29
2023-32-0046
Photochromism is a reversible color change phenomenon based on chemical reactions caused by light illumination. In the present study, this technique is applied to visualize the lubricating oil and fuel around the piston rings in the gasoline engine. The oil film was colored with a UV laser and photographed by synchronizing the shutter of a high-speed camera with a flashlight. The color density was evaluated as a value of absorbance, calculated from images taken at two different wavelengths and two different times before and after the coloration. The authors performed photochromism visualization experiments in an engine under motored operation. However, using photochromic dyes that are robust to temperature changes makes it possible to visualize the engine under fired operation. The experiment was conducted mainly by switching to the motored operation for a fixed time between the fired operations.
Technical Paper

Development of a 0D/1D Model System for the Cycle-to-Cycle Variation of High Tumble Spark Ignition Engines

2024-04-09
2024-01-2083
Due to increasingly strict emission regulations, the demand for internal combustion engine performance has enhanced. Combustion stability is one of the main research focuses due to its impacts on the emission level. Moreover, the combustion instability becomes more significant under the lean combustion concept, which is an essential direction of internal combustion engine development. The combustion instability is represented as the cycle-to-cycle variation. This paper presents a quasi-dimensional model system for predicting the cycle-to-cycle variation in 0D/1D simulation. The modeling is based on the cause-and-effect chain of cycle-to-cycle variation of spark ignition engines, which is established through the flow field analysis of large eddy simulation results [1]. In the model system, varying parameters are turbulent kinetic energy, the distribution of air-to-fuel equivalence ratio, and the in-cylinder velocity field.
Technical Paper

Experimental Investigation of Ion Formation for Auto-Ignition Combustion in a High-Temperature and High-Pressure Combustion Vessel

2023-08-28
2023-24-0029
One of the main challenges in internal combustion engine design is the simultaneous reduction of all engine pollutants like carbon monoxide (CO), total unburned hydrocarbons (THC), nitrogen oxides (NOx), and soot. Low-temperature combustion (LTC) concepts for compression ignition (CI) engines, e.g., premixed charged compression ignition (PCCI), make use of pre-injections to create a partially homogenous mixture and achieve an emission reduction. However, they present challenges in the combustion control, with the usage of in-cylinder pressure sensors as feedback signal is insufficient to control heat release and pollutant emissions simultaneously. Thus, an additional sensor, such as an ion-current sensor, could provide further information on the combustion process and effectively enable clean and efficient PCCI operation.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
X