Refine Your Search

Topic

Search Results

Standard

Information Relating to Duty Cycles and Average Power Requirements of Truck and Bus Engine Accessories

2000-08-31
CURRENT
J1343_200008
This report is intended to provide the information to estimate the accessory load of a typical heavy truck or bus. The components covered include: air compressors, alternators, refrigerant compressors, engine cooling fans and power steering pumps. The values show an estimate of the average power requirements and duty cycles for these accessories. This report does not address loads required for engine operation. Required systems include those needed for engine performance such as fuel pumps and electronic control modules (ECM).
Standard

Openings for Six- and Eight-Bolt Truck Transmission Mounted Power Take-Offs

2017-11-03
CURRENT
J704_201711
The accompanying mounting and gear locations are applicable for all general installations of power take-off on the transmission gear box of motor trucks and tractors where the size of the transmission permits. The heavy-duty type opening can be adapted to the regular-duty type by the use of an adapter with 6.35 mm (0.25 in) flange thickness with appropriate bolt pattern and thread engagement. (See Figures 1 and 2.)
Standard

Rating of Winches

2003-08-29
HISTORICAL
J706_200308
This SAE Standard applies only to new winches which are primarily designed for intermittent pulls and lifts and whose configuration and condition are the same as when they were shipped by the manufacturer. They are not intended to be used in any manner for the movement of personnel. They may be driven by any power source recommended by the manufacturer and will be capable of being powered in either direction. They will be equipped with an automatic safety brake system to control a load when lowering under power and positively hold a load when power is not being delivered to the winch. A hydraulic flow control valve or similar device may be used in the brake system to control a load when lowering under power. A clutch to release the drum for “free-spooling” may be provided and will be designed not to disengage itself under load. A drag brake may be provided to control “free-spooling,” but will not be relied on to control or hold a load.
Standard

Rating of Winches

2017-11-03
CURRENT
J706_201711
This SAE Standard applies only to new winches which are primarily designed for intermittent pulls and lifts and whose configuration and condition are the same as when they were shipped by the manufacturer. They are not intended to be used in any manner for the movement of personnel. They may be driven by any power source recommended by the manufacturer and will be capable of being powered in either direction. They will be equipped with an automatic safety brake system to control a load when lowering under power and positively hold a load when power is not being delivered to the winch. A hydraulic flow control valve or similar device may be used in the brake system to control a load when lowering under power. A clutch to release the drum for “free-spooling” may be provided and will be designed not to disengage itself under load. A drag brake may be provided to control “free-spooling,” but will not be relied on to control or hold a load.
Standard

Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles

2020-05-15
CURRENT
J2711_202005
This SAE Recommended Practice was established to provide an accurate, uniform, and reproducible procedure for simulating use of MD/HD conventional vehicles (CVs) and hybrid-electric vehicles (HEVs), as well as plug-in hybrid-electric vehicles (PHEVs) and battery electric vehicles (BEVs) on powertrain dynamometers for the purpose of measuring emissions and fuel economy. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, PM, CO2), as that decision will depend on the objectives of the tester. While the main focus of this procedure is for calculating fuel and energy consumption, it is anticipated that emissions may also be recorded during execution of this procedure. It should be noted that most MD/HD powertrains addressed in this document would be powered by engines that are certified separately for emissions. The engine certification procedure appears in the Code of Federal Regulations, Title 40 §86 and §1065.
Standard

Recommended Practices for CNG Powered Medium and Heavy-Duty Trucks

2018-02-12
CURRENT
J2406_201802
This SAE Recommended Practice provides guidance for the construction, operation, and maintenance of CNG powered medium and heavy-duty trucks. The intent of this document is to cover TRUCKS (6350 kg (14 001 gvw pounds) and above) and specifically excludes passenger vehicles such as: buses, recreational vehicles, motor homes and/or passenger vehicles which may incorporate a truck chassis in their construction.
Standard

Recommended Practices for CNG Powered Medium and Heavy-Duty Trucks

2002-03-13
HISTORICAL
J2406_200203
This SAE Recommended Practice provides guidance for the construction, operation, and maintenance of CNG powered medium and heavy-duty trucks. The intent of this document is to cover TRUCKS (6350 kg (14 001 gvw pounds) and above) and specifically excludes passenger vehicles such as: buses, recreational vehicles, motor homes and/or passenger vehicles which may incorporate a truck chassis in their construction.
Standard

SAE NODAL MOUNT

1992-02-01
HISTORICAL
J1134_199202
This SAE Recommended Practice establishes a single bolt pattern for the No. 1 clutch housing (see Figure 1) and the No. 2 clutch housing (see Figure 2). These four bolt patterns are designated to give commonality of mounting brackets in existing frame rails. The 420 mm (16.5 in) span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate commonly used clutches.
Standard

SAE NODAL MOUNT

1983-10-01
HISTORICAL
J1134_198310
This SAE Recommended Practice establishes a single bolt pattern for both No. 1 and No. 2 clutch housings (see Fig. 1). This four-bolt pattern is designated to give commonality of mounting brackets in existing frame rails. The 16.5 in span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate a 15.5 in two-plate clutch. The bolt pattern due to its symmetry allows reversing or inverting of brackets to attain change in vertical or horizontal positioning with fewer brackets. The phi (ϕ) symbol is for the convenience of the user in locating areas where technical revisions have been made to the previous issue of the report. If the symbol is next to the report title, it indicates a complete revision of the report.
Standard

SAE Nodal Mount

2017-08-14
CURRENT
J1134_201708
This SAE Recommended Practice establishes a single bolt pattern for the No. 1 clutch housing (see Figure 1) and the No. 2 clutch housing (see Figure 2). These four bolt patterns are designated to give commonality of mounting brackets in existing frame rails. The 420 mm (16.5 in) span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate commonly used clutches.
Standard

SNAP-ACCELERATION SMOKE TEST PROCEDURE FOR HEAVY-DUTY DIESEL POWERED VEHICLES

1996-02-01
HISTORICAL
J1667_199602
This SAE Recommended Practice applies to vehicle exhaust smoke measurements made using the Snap-Acceleration test procedure. Because this is a non-moving vehicle test, this test can be conducted along the roadside, in a truck depot, a vehicle repair facility, or other test facilities. The test is intended to be used on heavy-duty trucks and buses powered by diesel engines. It is designed to be used in conjunction with smokemeters using the light extinction principle of smoke measurement. This procedure describes how the snap-acceleration test is to be performed. It also gives specifications for the smokemeter and other test instrumentation and describes the algorithm for the measurement and quantification of the exhaust smoke produced during the test. Included are discussions of factors which influence snap-acceleration test results and methods to correct for these conditions.
X