Refine Your Search

Topic

Search Results

Journal Article

A Calculation Methodology for Predicting Exhaust Mass Flows and Exhaust Temperature Profiles for Heavy-Duty Vehicles

2020-07-20
Abstract The predictive control of commercial vehicle energy management systems, such as vehicle thermal management or waste heat recovery (WHR) systems, are discussed on the basis of information sources from the field of environment recognition and in combination with the determination of the vehicle system condition. In this article, a mathematical method for predicting the exhaust gas mass flow and the exhaust gas temperature is presented based on driving data of a heavy-duty vehicle. The prediction refers to the conditions of the exhaust gas at the inlet of the exhaust gas recirculation (EGR) cooler and at the outlet of the exhaust gas aftertreatment system (EAT). The heavy-duty vehicle was operated on the motorway to investigate the characteristic operational profile.
Journal Article

A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc

2024-01-04
Abstract Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO2 emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically.
Journal Article

A Contribution to Improving the Thermal Management of Powertrain Systems

2019-10-08
Abstract This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
Journal Article

A Distributed Parameter Approach for the Modeling of Thermoelectric Devices

2018-12-04
Abstract Thermoelectric devices (TEDs) allow direct electric and thermal energy mutual conversion. Because of the absence of working fluids and moving components, they can be used where it is not possible to refer to conventional technologies. In automotive applications, TEDs can give support in air conditioning and internal combustion engine (ICE) thermal heat recovery, contributing to increase the overall vehicle efficiency. Phenomena taking place in these devices are of a different nature and involve electric, thermal, and thermoelectric aspects, being highly influenced by materials’ characteristics and by system geometry. With the aim to offer a design tool, a TED mathematical model is presented in this article. The proposed model is based on a distributed parameter approach and has been conceived to consider heat transfer actual conditions. It accurately describes thermal energy production and removal terms due to Peltier and Joule effects.
Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
Journal Article

A K-Seat-Based PID Controller for Active Seat Suspension to Enhance Motion Comfort

2022-02-16
Abstract Autonomous vehicles (AVs) are expected to have a great impact on mobility by decreasing commute time and vehicle fuel consumption and increasing safety significantly. However, there are still issues that can jeopardize their wide impact and their acceptance by the public. One of the main limitations is motion sickness (MS). Hence, the last year’s research is focusing on improving motion comfort within AVs. On one hand, users are expected to perceive AVs driving style as more aggressive, as it might result in excessive head and body motion. Therefore, speed reduction should be considered as a countermeasure of MS mitigation. On the other hand, the excessive reduction of speed can have a negative impact on traffic. At the same time, the user’s dissatisfaction, i.e., acceptance and subjective comfort, will increase due to a longer journey time.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

A Method for the Estimation of Cooling System and Driving Performance for Fuel Cell Vehicles Based on Customer Fleet Data

2021-10-28
Abstract An efficient vehicle thermal management is essential to fulfil the requirements of fuel consumption and passenger comfort. Therefore, the design and dimensioning of the cooling system is under high scrutiny in new vehicle architectures. With increasing electrification, no longer just the load peaks define the design frame but also the dynamics of thermal loading and recovery. Consequently, electrified vehicle architectures such as plug-in hybrid fuel cell vehicles demand for alternative approaches regarding the design of cooling systems and the definition of the decisive criteria. This article presents a new methodology for designing the cooling system related to its demands in customer operation. The recorded fleet data is first filtered for high load driving, using the so-called thermal load integral (LI) as a filter criterion.
Journal Article

A Model Reference Adaptive Controller for an Electric Motor Thermal Management System in Autonomous Vehicles

2022-02-16
Abstract Technological advancements and growth in electric motors and battery packs enable vehicle propulsion electrifications, which minimize the need for fossil fuel consumption. The mobility shift to electric motors creates a demand for an efficient electric motor thermal management system that can accommodate heat dissipation needs with minimum power requirements and noise generation. This study proposes an intelligent hybrid cooling system that includes a gravity-aided passive cooling solution coupled with a smart supplementary liquid cooling system. The active cooling system contains a radiator, heat sink, variable frequency drive, alternating current (AC) fan, direct current (DC) pump, and real-time controller. A complete nonlinear mathematical model is developed using a lumped parameter approach to estimate the optimum fan and pump operations at each control interval.
Journal Article

A Model Study for Prediction of Performance of Automotive Interior Coatings: Effect of Cross-Link Density and Film Thickness on Resistance to Solvents and Chemicals

2019-03-27
Abstract Automotive interior coatings for flexible and rigid substrates represent an important segment within automotive coating space. These coatings are used to protect plastic substrates from mechanical and chemical damage, in addition to providing colour and design aesthetics. These coatings are expected to resist aggressive chemicals, fluids, and stains while maintaining their long-term physical appearance and mechanical integrity. Designing such coatings, therefore, poses significant challenges to the formulators in effectively balancing these properties. Among many factors affecting coating properties, the cross-link density (XLD) and solubility parameter (δ) of coatings are the most predominant factors.
Journal Article

A Neural Network-Based Regression Study for a Hybrid Battery Thermal Management System under Fast Charging

2021-11-03
Abstract Fast charging is significant for the driving convenience of an electric vehicle (EV). However, this technology causes lithium (Li)-ion batteries’ massive heat generation under such severe current rates. To ensure the thermal performance and lifespan of a Li-ion battery module under fast charging, an artificial neural network (ANN) regression method is proposed for a hybrid phase change material (PCM)—liquid coolant-based battery thermal management system (BTMS) design. Two ANN regression models are trained based on experimental data considering two targets: maximum temperature (Tmax ) and temperature standard deviation (TSD) of the hybrid cooling-based battery module. The regression accuracy reaches 99.942% and 99.507%, respectively. Four sets of experimental data are employed to validate the reliability of this method, and the cooling effect (Tmax and TSD) of the hybrid BTMS are predicted using the trained ANN regression models.
Journal Article

A Novel Approach for the Frequency Shift of a Single Component Eigenmode through Mass Addition in the Context of Brake Squeal Reduction

2022-09-23
Abstract Brake squeal reduces comfort for the vehicle occupants, damages the reputation of the respective manufacturer, and can lead to financial losses due to cost-intensive repair measures. Mode coupling is mainly held responsible for brake squeal today. Two adjacent eigenfrequencies converge and coalesce due to a changing bifurcation parameter. Several approaches have been developed to suppress brake squeal through structural changes. The main objective is to increase the distance of coupling eigenfrequencies. This work proposes a novel approach to structural modifications and sizing optimization aiming for a start at shifting a single component eigenfrequency. Locations suitable for structural changes are derived such that surrounding modes do not significantly change under the modifications. The positions of modifications are determined through a novel sensitivity calculation of the eigenmode to be shifted in frequency.
Journal Article

A Novel Approach towards Stable and Low Emission Stratified Lean Combustion Employing Two Solenoid Multi-Hole Direct Injectors

2018-04-18
Abstract Stratified lean combustion has proven to be a promising approach for further increasing the thermal efficiency of gasoline direct injection engines in low load conditions. In this work, a new injection strategy for stratified operation mode is introduced. A side and a central-mounted solenoid multi-hole injector are simultaneously operated in a single-cylinder engine. Thermodynamic investigations show that this concept leads to improved stability, faster combustion, reduced particle number emissions, and lower fuel consumption levels compared to using only one injector. Experiments at an optical engine and three-dimensional computational fluid dynamics (CFD) simulations explain the improvements by a more compact mixture and reduced piston wetting with two injectors. Finally, the application of external EGR in combination with the above concept allows NOx emissions to be effectively kept at a low level while maintaining a stable operation.
Journal Article

A Numerical Methodology to Test the Lubricant Oil Evaporation and Its Thermal Management-Related Properties Derating in Hydrogen-Fueled Engines

2023-09-15
Abstract Due to the incoming phase out of fossil fuels from the market in order to reduce the carbon footprint of the automotive sector, hydrogen-fueled engines are candidate mid-term solution. Thanks to its properties, hydrogen promotes flames that poorly suffer from the quenching effects toward the engine walls. Thus, emphasis must be posed on the heat-up of the oil layer that wets the cylinder liner in hydrogen-fueled engines. It is known that motor oils are complex mixtures of a number of mainly heavy hydrocarbons (HCs); however, their composition is not known a priori. Simulation tools that can support the early development steps of those engines must be provided with oil composition and properties at operation-like conditions. The authors propose a statistical inference-based optimization approach for identifying oil surrogate multicomponent mixtures. The algorithm is implemented in Python and relies on the Bayesian optimization technique.
Journal Article

A Review Paper on Recent Research of Noise and Vibration in Electric Vehicle Powertrain Mounting System

2021-10-01
Abstract The Noise, Vibration, and Harshness (NVH) performance of automotive powertrain (PT) mounts involves the PT source vibration, PT mount stiffness, road input, and overall transfer path design. Like safety, performance, and durability driving dynamics, vehicle-level NVH also plays a major contributing factor for electric vehicle (EV) refinement. This article highlights the recent research on PT mounting-related NVH controls on electric cars. This work’s main contribution lies in the comparative study of the internal combustion engine (ICE)-based PT mounting and EV-based PT mounting system (PMS) with specific EV challenges. Various literature on PT mounts from the passive, semi-active, and active mounting systems are studied. The parameter optimization technique for mount stiffness and location by various research papers is summarized to understand the existing methodologies and research gap in EV application.
Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

A Study of an Integrated HVAC-Vehicle Model for Automotive Vehicles

2018-04-18
Abstract The objective of this work is to develop an integrated HVAC-VEHICLE model for climate control studies. A published lumped parameter based HVAC model has been used as the framework for the HVAC modeling with some modifications to realize the climate control and to improve the robustness of the model. R134a (1,1,2,2-Tetrafluoroethane) has been used as the refrigerant fluid in this study. The stand-alone HVAC model has been compared qualitatively with the experimental works available in the literature. The experimental trends of the thermodynamic and performance related parameters of HVAC are reasonably well captured by the HVAC model. In particular, Coefficient of Performance (CoP) was found to decrease with increase in compressor speed and increase in ambient temperature but increase with increase in evaporator blower mass flow rate.
Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Aging Effects of Catalytic Converters in Diesel Exhaust Gas Systems and Their Influence on Real Driving NOx Emissions for Urban Buses

2018-06-18
Abstract The selective catalytic reduction (SCR) of nitrogen oxides seems to be the most promising technique to meet prospective emission regulations of diesel-driven commercial vehicles. In the case of developing cost-effective catalytic converters with comparably high activity, selectivity, and resistance against aging, ion-exchanged zeolites play a major role. This study presents, firstly, a brief literature review and subsequently a discussion of an extensive conversion analysis of exemplary Cu/ and Fe/zeolites, as well as a homogeneous admixture of both. The aging stages of SCR catalysts deserve particular attention in this study. In addition, the aging condition of the diesel oxidation catalyst (DOC) was analyzed, which influences the nitrogen dioxide (NO2) formation, because the NO2/nitrogen oxides (NOx) ratio upstream from the SCR converter could be identified as a key factor for low temperature NOx conversion.
X