Refine Your Search

Topic

Search Results

Journal Article

A Bibliographical Review of Electrical Vehicles (xEVs) Standards

2018-04-18
Abstract This work puts presents an all-inclusive state of the art bibliographical review of all categories of electrified transportation (xEVs) standards, issued by the most important standardization organizations. Firstly, the current status for the standards by major organizations is presented followed by the graphical representation of the number of standards issued. The review then takes into consideration the interpretation of the xEVs standards developed by all the major standardization organizations across the globe. The standards are differentiated categorically to deliver a coherent view of the current status followed by the explanation of the core of these standards. The ISO, IEC, SAE, IEEE, UL, ESO, NTCAS, JARI, JIS and ARAI electrified transportation vehicles xEV Standards from USA, Europe, Japan, China and India were evaluated. A total approximated of 283 standards in the area have been issued.
Journal Article

A Coupling Architecture for Remotely Validating Powertrain Assemblies

2023-03-15
Abstract Among the myriad of potential hybrid powertrain architectures, selecting the optimal for an application is a daunting task. Whenever available, computer models greatly assist in it. However, some aspects, such as pollutant emissions, are difficult to model, leaving no other option than to test. Validating plausible options before building the powertrain prototype has the potential of accelerating the vehicle development even more, doing so without shipping components around the world. This work concerns the design of a system to virtually couple—that is, avoiding physical contact—geographically distant test rigs in order to evaluate the components of a powertrain. In the past, methods have been attempted, either with or without assistance of mathematical models of the coupled components (observers). Existing methods are accurate only when the dynamics of the systems to couple are slow in relation to the communication delay.
Journal Article

A Global Survey of Standardization and Industry Practices of Automotive Cybersecurity Validation and Verification Testing Processes and Tools

2023-11-16
Abstract The United Nation Economic Commission for Europe (UNECE) Regulation 155—Cybersecurity and Cybersecurity Management System (UN R155) mandates the development of cybersecurity management systems (CSMS) as part of a vehicle’s lifecycle. An inherent component of the CSMS is cybersecurity risk management and assessment. Validation and verification testing is a key activity for measuring the effectiveness of risk management, and it is mandated by UN R155 for type approval. Due to the focus of R155 and its suggested implementation guideline, ISO/SAE 21434:2021—Road Vehicle Cybersecurity Engineering, mainly centering on the alignment of cybersecurity risk management to the vehicle development lifecycle, there is a gap in knowledge of proscribed activities for validation and verification testing.
Journal Article

A New Approach for Development of a High-Performance Intake Manifold for a Single-Cylinder Engine Used in Formula SAE Application

2019-07-26
Abstract The Formula SAE (FSAE) is an international engineering competition where a Formula style race car is designed and built by students from worldwide universities. According to FSAE regulation, an air restrictor with circular cross section of 20 mm for gasoline-fuelled and 19 mm for E-85-fuelled vehicles is to be incorporated between the throttle valve and engine inlet. The sole purpose of this regulation is to limit the airflow to the engine used. The only sequence allowed is throttle valve, restrictor and engine inlet. A new approach of combining ram theory and acoustic theory methods are investigated to increase the performance of the engine by designing an optimized intake runner for a particular engine speed range and an optimized plenum volume in this range. Engine performance characteristics such as brake power, brake torque and volumetric efficiency are taken into considerations.
Journal Article

Aerodynamic Characterization of a Full-Scale Compact Car Exposed to Transient Crosswind

2021-04-07
Abstract The transient surface pressure over a full-scale, operational compact automotive vehicle—a Volkswagen Golf 7—exposed to transient crosswinds with relative yaw angles of β = 22-45° has been characterized. Experiments were performed at the BMW side-wind facility in Aschheim, Germany. Measurements of the incoming flow in front of the car were taken with eleven five-hole dynamic pressure probes, and separately, time-resolved surface pressure measurements at 188 locations were performed. Unsteady characteristics (not able to be identified in quasi-steady modelling) have been identified: the flow in separated regions on the vehicle’s leeward side takes longer to develop than at the windward side, and spatially, the vehicle experiences local crosswind as it gradually enters the crosswind.
Journal Article

Aerodynamic Influence of Deformations due to Wind Load on Full-Sized Passenger Cars

2022-01-24
Abstract In this article, a methodology is presented to assess the influence of time-averaged deformations on a production car of the 2018 A-class due to wind load. Exemplary, the deformations of the front and rear bumper are investigated. The aerodynamic development of vehicles at Mercedes-Benz is divided into several phases. When comparing, force coefficients differences can be observed between these distinct hardware stages as well as when comparing steady-state simulations to wind tunnel measurements. In early phases when prototype vehicles are not yet available, so-called aero foam models are used. These are well-defined full-sized vehicle models as the outer skin is milled from Polyurethane. Important aerodynamic characteristics such as an engine compartment with a cooling module, deflecting axles with rotatable wheels, and underbody covers are represented.
Journal Article

Analysis and Optimization of Aerodynamic Noise in Vehicle Based on Acoustic Perturbation Equations and Statistical Energy Analysis

2022-03-31
Abstract In this article, the method based on the combination of the acoustic perturbation equations and the statistical energy analysis has been used to simulate and optimize the interior aerodynamic noise of a large sport utility vehicle model. The reliability of the method was verified by comparing the analysis results with the wind tunnel test. Influenced by the main noise sources such as A-pillar, exterior rearview mirror, and front sidewindow, the wind noise of the model was significantly greater than that of the same class. To improve the wind noise performance, the side mirror was optimized with the method, including the minimum distance between the rearview mirror and the triangle trim cover, the angle between the rearview mirror and the front sidewindow, and the shell groove of the rearview mirror. The simulation results show that the overall sound pressure level in the car decreases by 2.12 dBA and the articulation index increases by 4.04% after optimization.
Journal Article

Analysis of Deflection and Contact Characteristics of a Pneumatic Tire Using Three-Dimensional Membrane Ring and Brush Models

2020-06-24
Abstract This study predicts the dynamic characteristics for tires in the development stages of a vehicle with a focus on the generated forces. In particular, this investigation proposes an approximation analysis for the deflection and contact characteristics of a pneumatic tire. This consists of an integrated model for a three-dimensional membrane ring and brush models. This model is more complex than conventional models, which resulted in increased computational costs. Because the tire dynamic characteristics affects the contact pressure, the deformation of the tread rubber caused an interaction of forces. Therefore, the tread ring deformation was defined as a summation of the mode basis functions, which expressed vibrational behavior. This approximation linearizes the energy function, which helped calculate the potential energy of the tire structure using a theoretical equation without discretization.
Journal Article

Analysis of the Water Management on a Full Virtual Car Using Computational Fluid Dynamics

2020-03-23
Abstract The appearance of an automobile is anything but unimportant for the owner. This applies to the acquisition as well as the keeping. In this context, the avoidance of corrosion is a fundamental part of the user’s satisfaction of a company. The body design can be modified to optimize drainage and reduce the risk of corrosion, improving the owner’s satisfaction with the purchase of the automobile. During the proof of concept of water management, as part of the process of development, physical prototypes are state of the art. At this point in the development process, every necessary change is expensive and time consuming. Virtual methods are able to support the development in earlier steps and thus reduce costs. The conventional Computational Fluid Dynamics (CFD) methods could not handle the simulation of a full car in the rain or water passage properly due to much higher computation efforts and deviations from the experiments.
Journal Article

Analyzing Effects of Upperbody on Road Noise of Platform-Sharing Vehicles

2021-08-24
Abstract Platform sharing is widely used for reducing time and cost of vehicle development. It has been believed that vehicles that employ the same platform show similar performances of noise and vibration. Recently, however, it is observed that two vehicles that share the same platform present a noticeable difference in road noise. The structural difference between the two vehicles is located only at the upperbody of a Body In White (BIW). In order to investigate the effects of the upperbody on the road noise, several analyses such as (1) input point stiffness, (2) noise transfer function (NTF), and (3) road noise are performed using finite element (FE) models of the vehicles. As a result, it is found that the upperbody affects the NTF of the trimmed body and the road noise, which explains the dissimilarity of the road noise for the two vehicles. A novel method based on equivalent radiated power (ERP) is proposed to assess the upperbody.
Journal Article

Co-Simulation Study of the Split-Crankshaft Engine’s Electromechanical Clutch Unit

2018-03-23
Abstract The main objective of active downsizing is to increase the power train efficiency. In order to consistently enhance an approach of active downsizing, it is inevitable to disable and additionally to disengage part of the overall engine displacement volume. The disengagement avoids the friction loss of the piston group as well as its crank- and valve-train section. Therefore, this beneficial approach, the Split-Crankshaft Engine (SCE) is currently under development at the Chair of Internal Combustion Engines in cooperation with the Gear Research Centre (FZG), at the Technical University of Munich. The SCE concept consists of two partial internal combustion engines, which are arranged inline. The Primary Engine (PE) is permanently running while the Secondary Engine (SE) can be switched on and off load-dependently during driving operation.
Journal Article

Conceptualizing an Urban Operations Vehicle within a Comprehensive Research and Development Program

2023-09-07
Abstract In the last decades we have witnessed an increasing number of military operations in urban environments. Complex urban operations require high standards of training, equipment, and personnel. Emergency forces on the ground will need specialized vehicles to support them in all parts and levels of this extremely demanding environment including the subterranean and interior of infrastructure. The development of vehicles for this environment has lagged but offers a high payoff. This article describes the method for developing a concept for an urban operations vehicle by characterization of the urban environment, deduction of key issues, evaluation of related prototyping, science fiction story-typing of the requirements for such a vehicle, and comparison with field-proven and scalable solutions. Embedding these thoughts into a comprehensive research and development program provides lines of development, setting the stage for further research.
Journal Article

Crashworthiness Performance of Multi-Cornered Structures under Quasi-Static Compression and Dynamic Axial Loading Conditions

2020-08-11
Abstract With increased consumer demand for fuel efficient vehicles as well as more stringent greenhouse gas regulations and/or Corporate Average Fuel Economy (CAFE) standards from governments around the globe, the automotive industry, including the OEM (Original Equipment Manufacturers) and suppliers, is working diligently to innovate in all areas of vehicle design. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, mass reduction has been identified as an important strategy in future vehicle development. In this article, the development, analysis, and experiment of multi-cornered structures are presented. To achieve mass reduction, two non-traditional multi-cornered structures, with twelve- and sixteen-cornered cross-sections, were developed separately by using computer simulations.
Journal Article

Designing Manual Workplace Systems in Engineer-to-Order Enterprises to Improve Productivity: A Kano Analysis

2024-01-16
Abstract Being an engineer-to-order (ETO) operating industry, the control cabinet industry faces difficulties in process and workplace optimizations due to changing requirements and lot size one combined with volatile orders. To optimize workplaces for employees, current literature is focusing on ergonomic designs, providing frameworks to analyze workplaces, leaving out the optimal design for productivity. This work thus utilizes a Kano analysis, collecting empirical data to identify essential design requirements for assembly workplaces, incorporating input from switchgear manufacturing employees. The results emphasize the need for a balance between ergonomics and efficiency in workplace design. Surprisingly, few participants agree on the correlation between improved processes and workspaces having a positive impact on their well-being and product quality.
Journal Article

Development of Safe and Sustainable EPAS (Electric Power Assist Steering) System for Emerging Markets

2018-04-07
Abstract The vehicle attributes developed for emerging markets like India are unique because of different topographical conditions, diversity and culture within the different states. Major attributes in vehicle development process is development of safe and sustainable vehicle systems (steering, brakes etc.) for the driver. India is presently an emerging market for automotive sector. With booming economy, purchasing power of the consumer has gone up in the past few years. Most of young population of India have started buying the cars. At the same time, India’s road infrastructure, vehicle regulations have exalted over the years. The consumer cognizance towards the vehicles have started changing now. They want safer, robust system in their vehicles with new convenience features at affordable cost. In recent years, almost all OEM’s in India have migrated steering systems from HPAS to EPAS for payback on fuel economy and weight.
Journal Article

Development of a Learning Capability in Virtual Operator Models

2019-03-14
Abstract This research developed methods for a virtual operator model (VOM) to learn the optimal control inputs for operation of a virtual excavator. Virtual design, used to model, simulate, and test new features, has often been limited by the fidelity of the virtual model of human operators. Human operator learns, over time, the capability, limits, and control characteristics of new vehicles to develop the best strategy to maximize the efficiency of operation. However, VOMs are developed with fixed strategies and for specific vehicle models (VMs) and require time-consuming re-tuning of the VOM for each new vehicle design. Thus, there typically is no capability to optimize strategies, taking account of variation in vehicle capabilities and limitations. A VOM learning capability was developed to optimize control inputs for the swing-to-pile task of a trenching operation. Different control strategies consisted of varied combinations of speed control, position control, and coast.
Journal Article

Digital Twin-Based Remaining Driving Range Prediction for Connected Electric Vehicles

2023-07-17
Abstract Electric vehicles (EVs) suffer from long charging time and inconvenient charging due to limited charging stations, which are the main causes of drivers’ range anxiety. Real-time and accurate driving range prediction can help drivers plan journeys, alleviate range anxiety, and promote EV development. However, predicting the EV driving range is challenging due to different weather, road conditions, driver habits, and limited available data. To address this issue, this article proposes a novel digital twin-based driving range prediction method. First, a one-year real-world EV dataset in Beijing is utilized. Detailed feature selection is conducted for the dataset, and six key features are extracted: battery SOC, consumed battery SOC, battery total voltage, battery maximum cell voltage, battery minimum cell voltage, and mileage already driven. Then, a random forest method is used to train the EV driving range prediction model using the features described earlier.
Journal Article

Distributed Simulation and Testing for the Design of a Smart Suspension

2020-07-08
Abstract In the design of vehicle components, the high dependence and connectivity among the vehicle systems make it necessary to continuously share information about their design status and their effect on the complete vehicle performance. This fact means that very early full system evaluations with the participation of all involved stakeholders are a must. Unfortunately, this need is difficult to fulfill as different development paces exist and not all the designs are available at the same moment and with the same maturity level. This is also the case for the availability of prototypes. In the present article, we introduce a distributed simulation and testing environment capable of linking information among virtual and physical components (e.g., test benches for prototypes and first parts) as a design tool perfectly embedded inside the model-based design methodology.
Journal Article

Driveline System Effects on Powertrain Mounting Optimization for Vibration Isolation under Actual Vehicle Conditions

2023-08-04
Abstract Vehicle vibration is the key consideration in the early stage of vehicle development. The most dynamic system in a vehicle is the powertrain system, which is a source of various frequency vibration inputs to the vehicle. Mostly for powertrain mounting system design, only the uncoupled powertrain system is considered. However, in real situations, other subsystems are also attached to the powertrain unit. Thereby, assuming only the powertrain unit ignores the dynamic interactions among the powertrain and other systems. To address this shortcoming, a coupled powertrain and driveline mounting system problem is formulated and examined. This 16 DOF problem is constructed around a case of a front engine-based powertrain unit attached to the driveline system, which as an assembly resting on other systems such as chassis, suspensions, axles, and tires.
X