Refine Your Search

Topic

Search Results

Journal Article

A Climate-Change Scorecard for United States Non-commercial Driver Education

2023-05-13
Abstract In the United States (USA), transportation is the largest single source of greenhouse gas (GHG) emissions, representing 27% of total GHGs emitted in 2020. Eighty-three percent of these came from road transport, and 57% from light-duty vehicles (LDVs). Internal combustion engine (ICE) vehicles, which still form the bulk of the United States (US) fleet, struggle to meet climate change targets. Despite increasingly stringent regulatory mechanisms and technology improvements, only three US states have been able to reduce their transport emissions to the target of below 1990 levels. Fifteen states have made some headway to within 10% of their 1990 baseline. Largely, however, it appears that current strategies are not generating effective results. Current climate-change mitigation measures in road transport tend to be predominantly technological.
Journal Article

A Combination of Intelligent Tire and Vehicle Dynamic Based Algorithm to Estimate the Tire-Road Friction

2019-04-08
Abstract One of the most important factors affecting the performance of vehicle active chassis control systems is the tire-road friction coefficient. Accurate estimation of the friction coefficient can lead to better performance of these controllers. In this study, a new three-step friction estimation algorithm, based on intelligent tire concept, is proposed, which is a combination of experiment-based and vehicle dynamic based approaches. In the first step of the proposed algorithm, the normal load is estimated using a trained Artificial Neural Network (ANN). The network was trained using the experimental data collected using a portable tire testing trailer. In the second step of the algorithm, the tire forces and the wheel longitudinal velocity are estimated through a two-step Kalman filter. Then, in the last step, using the estimated tire normal load and longitudinal and lateral forces, the friction coefficient can be estimated.
Journal Article

A Comparative Study of Directly Injected, Spark Ignition Engine Combustion and Energy Transfer with Natural Gas, Gasoline, and Charge Dilution

2022-01-13
Abstract This article presents an investigation of energy transfer, flame propagation, and emissions formation mechanisms in a four-cylinder, downsized and boosted, spark ignition engine fuelled by either directly injected compressed natural gas (DI CNG) or gasoline (GDI). Three different charge preparation strategies are examined for both fuels: stoichiometric engine operation without external dilution, stoichiometric operation with external exhaust gas recirculation (EGR), and lean burn. In this work, experiments and engine modelling are first used to analyze the energy transfer throughout the engine system. This analysis shows that an early start of fuel injection (SOI) improves fuel efficiency through lower unburned fuel energy at low loads with stoichiometric DI CNG operation.
Journal Article

A Comparative Study of Equivalent Factor Optimization Based on Heuristic Algorithms for Hybrid Electric Vehicles

2022-08-12
Abstract The equivalent consumption minimization strategy (ECMS) is an instantaneous optimization method implemented online for hybrid electric vehicles (HEVs) to improve fuel economy. To fulfill the near-optimal performance of ECMS, equivalent factors (EFs) must be well tuned for different powertrains and driving cycles. This study proposes a hierarchical offline optimization framework which tunes the penalty value of state of charge (SOC) balance in the outer layer and optimizes EFs based on heuristic algorithms in the inner layer. A comprehensive analysis is conducted to evaluate three heuristic algorithms, including the genetic algorithm (GA), the nonlinear-inertia-decreasing particle swarm optimization algorithm (NLPSO), and the novel firefly algorithm (FA). The traversal optimization method (TOM) is chosen as the benchmark. Besides, a sensitivity analysis is carried out to reveal the impact of the penalty value on the battery SOC balance.
Journal Article

A Comparative Study of Longitudinal Vehicle Control Systems in Vehicle-to-Infrastructure Connected Corridor

2023-11-16
Abstract Vehicle-to-infrastructure (V2I) connectivity technology presents the opportunity for vehicles to perform autonomous longitudinal control to navigate safely and efficiently through sequences of V2I-enabled intersections, known as connected corridors. Existing research has proposed several control systems to navigate these corridors while minimizing energy consumption and travel time. This article analyzes and compares the simulated performance of three different autonomous navigation systems in connected corridors: a V2I-informed constant acceleration kinematic controller (V2I-K), a V2I-informed model predictive controller (V2I-MPC), and a V2I-informed reinforcement learning (V2I-RL) agent. A rules-based controller that does not use V2I information is implemented to simulate a human driver and is used as a baseline. The performance metrics analyzed are net energy consumption, travel time, and root-mean-square (RMS) acceleration.
Journal Article

A Comprehensive Risk Management Approach to Information Security in Intelligent Transport Systems

2021-05-05
Abstract Connected vehicles and intelligent transportation systems are currently evolving into highly interconnected digital environments. Due to the interconnectivity of different systems and complex communication flows, a joint risk analysis for combining safety and security from a system perspective does not yet exist. We introduce a novel method for joint risk assessment in the automotive sector as a combination of the Diamond Model, Failure Mode and Effects Analysis (FMEA), and Factor Analysis of Information Risk (FAIR). These methods have been sequentially composed, which results in a comprehensive risk management approach to information security in an intelligent transport system (ITS). The Diamond Model serves to identify and structurally describe threats and scenarios, the widely accepted FMEA provides threat analysis by identifying possible error combinations, and FAIR provides a quantitative estimation of probabilities for the frequency and magnitude of risk events.
Journal Article

A Comprehensive Study of Vibration Suppression and Optimization of an Electric Power Steering System

2021-02-11
Abstract Electric power steering (EPS) systems have become the most advantageous steering system used in vehicles. They provide better fuel efficiency and a more compact design over traditional hydraulic power steering (HPS) systems. However, EPS systems are afflicted with unwanted noise and vibration that can undermine the safety of drivers. This article presents a mathematical framework for vibration analysis in a column-type EPS system. The steering column is modeled as a continuous clamped column. The equations of motion are derived using Hamilton’s principle, and explicit expressions are presented for the frequency and transmissibility equations. A three-degrees-of-freedom (3-DOF) dynamic model is also presented by an approximation of the stiffness, damping, and mass of the steering column. The results of the proposed analytical models are validated using ANSYS simulation.
Journal Article

A Deep Learning-Based Strategy to Initiate Diesel Particle Filter Regeneration

2021-12-13
Abstract Deep learning (DL)-based approaches enable unprecedented control paradigms for propulsion systems, utilizing recent advances in high-performance computing infrastructure connected to modern vehicles. These approaches can be employed to optimize diesel aftertreatment control systems targeting the reduction of emissions. The optimization of the Trapped Soot Load (TSL) reduction in the Diesel Particulate Filter (DPF) is such an example. As part of the diesel aftertreatment system, the DPF stores the soot particles resulting from the combustion process in the engine. Periodically, the stored soot is oxidized during a DPF regeneration event. The efficiency of such a regeneration influences the fuel economy, and potentially the service interval of the vehicle. The quality of a regeneration depends on the operating conditions of the DPF, the engine, and the ability to complete the regeneration event.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

A Direct Yaw-Moment Control Logic for an Electric 2WD Formula SAE Using an Error-Cube Proportional Derivative Controller

2020-07-26
Abstract A Direct Yaw-Moment Control (DYC) logic for a rear-wheel-drive electric-powered vehicle is proposed. The vehicle is a Formula SAE (FSAE) type race car, with two electric motors powering each rear wheel. Vehicle baseline balance is neutral at low speeds, for increased maneuverability, and increases understeering at high speeds (due to the aerodynamic configuration) for stability. A controller that can deal with these yaw response variations, modelling uncertainties, and vehicle nonlinear behavior at limit handling is proposed. A two-level control strategy is considered. For the upper level, yaw rate and sideslip angle are considered as feedback control variables and a cubic-error Proportional Derivative (PD) controller is proposed for the feedback control. For the lower level, a traction control algorithm is used, together with the yaw moment requirement, for torque allocation.
Journal Article

A Formally Verified Fail-Operational Safety Concept for Automated Driving

2022-01-17
Abstract Modern Automated Driving (AD) systems rely on safety measures to handle faults and to bring the vehicle to a safe state. To eradicate lethal road accidents, car manufacturers are constantly introducing new perception as well as control systems. Contemporary automotive design and safety engineering best practices are suitable for analyzing system components in isolation, whereas today’s highly complex and interdependent AD systems require a novel approach to ensure resilience to multiple-point failures. We present a holistic and cost-effective safety concept unifying advanced safety measures for handling multiple-point faults. Our proposed approach enables designers to focus on more pressing issues such as handling fault-free hazardous behavior associated with system performance limitations. To verify our approach, we developed an executable model of the safety concept in the formal specification language mCRL2.
Journal Article

A K-Seat-Based PID Controller for Active Seat Suspension to Enhance Motion Comfort

2022-02-16
Abstract Autonomous vehicles (AVs) are expected to have a great impact on mobility by decreasing commute time and vehicle fuel consumption and increasing safety significantly. However, there are still issues that can jeopardize their wide impact and their acceptance by the public. One of the main limitations is motion sickness (MS). Hence, the last year’s research is focusing on improving motion comfort within AVs. On one hand, users are expected to perceive AVs driving style as more aggressive, as it might result in excessive head and body motion. Therefore, speed reduction should be considered as a countermeasure of MS mitigation. On the other hand, the excessive reduction of speed can have a negative impact on traffic. At the same time, the user’s dissatisfaction, i.e., acceptance and subjective comfort, will increase due to a longer journey time.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

A Methodology for the Reverse Engineering of the Energy Management Strategy of a Plug-In Hybrid Electric Vehicle for Virtual Test Rig Development

2021-09-22
Abstract Nowadays, the need for a more sustainable mobility is fostering powertrain electrification as a way of reducing the carbon footprint of conventional vehicles. On the other side, the presence of multiple energy sources significantly increases the powertrain complexity and requires the development of a suitable Energy Management System (EMS) whose performance can strongly affect the fuel economy potential of the vehicle. In such a framework, this article proposes a novel methodology to reverse engineer the control strategy of a test case P2 Plug-in Hybrid Electric Vehicle (PHEV) through the analysis of experimental data acquired in a wide range of driving conditions. In particular, a combination of data obtained from On-Board Diagnostic system (OBD), Controller Area Network (CAN)-bus protocol, and additional sensors installed on the High Voltage (HV) electric net of the vehicle is used to point out any dependency of the EMS decisions on the powertrain main operating variables.
Journal Article

A Mid-fidelity Model in the Loop Feasibility Study for Implementation of Regenerative Antilock Braking System in Electric Vehicles

2023-07-29
Abstract The tailpipe zero-emission legislation has pushed the automotive industry toward more electrification. Regenerative braking is the capability of electric machines to provide brake torque. So far, the regenerative braking feature is primarily considered due to its effect on energy efficiency. However, using individual e-machines for each wheel makes it possible to apply the antilock braking function due to the fast torque-tracking characteristics of permanent magnet synchronous motors (PMSM). Due to its considerable cost reduction, in this article, a feasibility study is carried out to investigate if the ABS function can be done purely through regenerative braking using a mid-fidelity model-based approach. An uni-tire model of the vehicle with a surface-mount PMSM (SPMSM) model is used to verify the idea. The proposed ABS control system has a hierarchical structure containing a high-level longitudinal slip controller and a low-level SPMSM torque controller.
Journal Article

A New Approach of Antiskid Braking System (ABS) via Disk Pad Position Control (PPC) Method

2020-10-15
Abstract A classical antiskid brake system (ABS) is typically used to control the brake fluid pressure by creating repeated cycles of decreasing and increasing brake force to avoid wheel locking, causing the fluctuation of the brake hydraulic pressure and resulting in vibration during wheel rotation. This article proposes a new approach of skid control for ABS by controlling the disk pad position. This new approach involves using a modest control method to determine the optimal skid that allows the wheel to exert maximum friction force for decelerating the vehicle by shifting the brake pad position instead of modulating the brake fluid pressure. This pad position control (PPC) method works in a continuous manner. Therefore, no rapid changes are required in the brake pressure and wheel rotation speed. To identify the PPC braking performance, braking test simulations and experiments have been carried out.
Journal Article

A New Optimal Design of Stable Feedback Control of Two-Wheel System Based on Reinforcement Learning

2023-04-26
Abstract The two-wheel system design is widely used in various mobile tools, such as remote-control vehicles and robots, due to its simplicity and stability. However, the specific wheel and body models in the real world can be complex, and the control accuracy of existing algorithms may not meet practical requirements. To address this issue, we propose a double inverted pendulum on mobile device (DIPM) model to improve control performances and reduce calculations. The model is based on the kinetic and potential energy of the DIPM system, known as the Euler-Lagrange equation, and is composed of three second-order nonlinear differential equations derived by specifying Lagrange. We also propose a stable feedback control method for mobile device drive systems. Our experiments compare several mainstream reinforcement learning (RL) methods, including linear quadratic regulator (LQR) and iterative linear quadratic regulator (ILQR), as well as Q-learning, SARSA, DQN (Deep Q Network), and AC.
Journal Article

A Nonlinear Model Predictive Control Design for Autonomous Multivehicle Merging into Platoons

2021-10-25
Abstract Integrated control for automated vehicles in platoons with nonlinear coupled dynamics is developed in this article. A nonlinear MPC approach is used to address the multi-input multi-output (MIMO) nature of the problem, the nonlinear vehicle dynamics, and the platoon constraints. The control actions are determined by using model-based prediction in conjunction with constrained optimization. Two distinct scenarios are then simulated. The first scenario consists of the multivehicle merging into an existing platoon in a controlled environment in the absence of noise, whereas the effects of external disturbances, modeling errors, and measurement noise are simulated in the second scenario. An extended Kalman filter (EKF) is utilized to estimate the system states under the sensor and process noise effectively.
Journal Article

A Novel Approach to Energy Management Strategy for Hybrid Electric Vehicles

2021-02-25
Abstract The principal issue in choosing an energy management strategy (EMS) for hybrid electric vehicles (HEVs) has been the way of determining the optimal share of electric energy in hybrid drive. In this article, a novel EMS is proposed that, along with maximum engine efficiency in the hybrid drive, can optimize the share of battery energy for the maximum efficiency of vehicle power train expanded with an imaginary power plant that, by delivering the electric energy to a grid, feeds the vehicle battery. It is proved that the expanded power train efficiency has the local maximum for a wide range of wheel power demand. The relation between the wheel power demand in hybrid drive, the share of battery energy, and the maximum efficiency of the expanded power train is conducted offline. Downloaded to the onboard control system, it enables the operation with the instantaneously optimal share of battery energy and the control system to operate with the low computational load.
Journal Article

A Novel Approach to Test Cycle-Based Engine Calibration Technique Using Genetic Algorithms to Meet Future Emissions Standards

2020-08-11
Abstract Heavy-duty (HD) diesel engines are the primary propulsion systems in use within the transportation sector and are subjected to stringent oxides of nitrogen (NOx) and particulate matter (PM) emission regulations. The objective of this study is to develop a robust calibration technique to optimize HD diesel engine for performance and emissions to meet current and future emissions standards during certification and real-world operations. In recent years, California - Air Resources Board (C-ARB) has initiated many studies to assess the technology road maps to achieve Ultra-Low NOx emissions for HD diesel applications [1]. Subsequently, there is also a major push for the complex real-world driving emissions as the confirmatory and certification testing procedure in Europe and Asia through the UN-ECE and ISO standards.
X