Refine Your Search

Topic

Search Results

Journal Article

3D Scene Reconstruction with Sparse LiDAR Data and Monocular Image in Single Frame

2017-09-23
Abstract Real-time reconstruction of 3D environment attributed with semantic information is significant for a variety of applications, such as obstacle detection, traffic scene comprehension and autonomous navigation. The current approaches to achieve it are mainly using stereo vision, Structure from Motion (SfM) or mobile LiDAR sensors. Each of these approaches has its own limitation, stereo vision has high computational cost, SfM needs accurate calibration between a sequences of images, and the onboard LiDAR sensor can only provide sparse points without color information. This paper describes a novel method for traffic scene semantic segmentation by combining sparse LiDAR point cloud (e.g. from Velodyne scans), with monocular color image. The key novelty of the method is the semantic coupling of stereoscopic point cloud with color lattice from camera image labelled through a Convolutional Neural Network (CNN).
Journal Article

3D-Printed Antenna Design Using Graphene Filament and Copper Tape for High-Tech Air Components

2022-11-25
Abstract Additive manufacturing (AM) technologies can produce lighter parts; reduce manual assembly processes; reduce the number of production steps; shorten the production cycle; significantly reduce material consumption; enable the production of prostheses, implants, and artificial organs; and produce end-user products since it is used in many sectors for many reasons; it has also started to be used widely, especially in the field of aerospace. In this study, polylactic acid (PLA) was preferred for the antenna substrate because it is environmentally friendly, easy to recycle, provides convenience in production design with a three-dimensional (3D) printer, and is less expensive compared to other available materials. Copper (Cu) tape and graphene filament were employed for the antenna patch component due to their benefits.
Journal Article

A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc

2024-01-04
Abstract Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO2 emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically.
Journal Article

A Combined LiDAR-Camera Localization for Autonomous Race Cars

2022-01-06
Abstract Autonomous Racing is gaining increasing publicity as an attractive showcase of state-of-the-art technologies and the enhanced algorithms used for autonomous driving. The Indy Autonomous Challenge (IAC) tackled autonomous high-speed wheel-to-wheel racing at the famous Indianapolis Motor Speedway (IMS) in October 2021. To solve this problem, advanced autonomous driving algorithms were developed by each team. In this article, we display a multi-sensor localization approach developed for usage in the IAC. To decouple the lateral and longitudinal position of the ego vehicle, a trackbound coordinate system is used that can be transformed to conventional Cartesian coordinates. The longitudinal motion of the car is tracked via a modified version of the OpenVSLAM that outputs the progress of the already driven distance.
Journal Article

A Diesel Engine Ring Pack Performance Assessment

2024-03-23
Abstract Demonstrating ring pack operation in an operating engine is very difficult, yet it is essential to optimize engine performance parameters such as blow-by, oil consumption, emissions, and wear. A significant amount of power is lost in friction between piston ring–cylinder liner interfaces if ring pack parameters are not optimized properly. Thus, along with these parameters, it is also necessary to reduce friction power loss in modern internal combustion engines as the oil film thickness formed between the piston ring and liner is vital for power loss reduction due to friction. Hence, it has also been a topic of research interest for decades. Piston and ring dynamics simulation software are used extensively for a better ring pack design. In this research work, a similar software for piston ring dynamics simulation reviews the ring pack performance of a four-cylinder diesel engine.
Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation

2023-04-10
Abstract With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation.
Journal Article

A Modular Internal Combustion Engine Blow Rig and Cold-Flow Analysis Concept for Industrial Particle Image Velocimetry Measurements under Steady, Near-Reality Charge Air Conditions

2020-03-19
Abstract A modular, stationary IC engine blow rig for differential and integral flow field measurements using particle image velocimetry (PIV) has been developed. Unlike conventional PIV blow rigs, the given design is capable of operating under near-reality charge air conditions, that is, highly pressurized, hot intake air supply at high flow rates. Its conceptual flexibility as well as peripheral infrastructure allow for comprehensive and wide-ranging flow field analysis. Because of a modular architecture, it is neither confined to a specific cylinder head design nor limited solely to the application of PIV for differential flow field analysis. It also already accounts for direct inlet flow determination through an additional PIV access point upstream of the cylinder head. The inlet and outlet ducts have been designed with regular shapes and smooth walls, such that a digital twin-type CFD model of the blow rig is conveniently feasible.
Journal Article

A Multi-scale Fusion Obstacle Detection Algorithm for Autonomous Driving Based on Camera and Radar

2023-03-10
Abstract Effective circumstance perception technology is the prerequisite for the successful application of autonomous driving, especially the detection technology of traffic objects that affects other tasks such as driving decisions and motion execution in autonomous vehicles. However, recent studies show that a single sensor cannot perceive the surrounding environment stably and effectively in complex circumstances. In the article, we propose a multi-scale feature fusion framework that exploits a dual backbone network to extract camera and radar feature maps and performs feature fusion on three different feature scales using a new fusion module. In addition, we introduce a new generation mechanism of radar projection images and relabel the nuScenes dataset since there is no other suitable autonomous driving dataset for model training and testing.
Journal Article

A Multiscale Cylinder Bore Honing Pattern Lubrication Model for Improved Engine Friction

2019-07-02
Abstract Three-dimensional patterns representing crosshatched plateau-honed cylinder bores based on two-dimensional Fast Fourier Transform (FFT) of measured surfaces were generated and used to calculate pressure flow, shear-driven flow, and shear stress factors. Later, the flow and shear stress factors obtained by numerical simulations for various surface patterns were used to calculate lubricant film thickness and friction force between piston ring and cylinder bore contact in typical diesel engine conditions using a mixed lubrication model. The effects of various crosshatch honing angles, such as 30°, 45°, and 60°, and texture heights on engine friction losses, wear, and oil consumption were discussed in detail. It is observed from numerical results that lower lubricant film thickness values are generated with higher honing angles, particularly in mixed lubrication regime where lubricant film thickness is close to the roughness level, mainly due to lower resistance to pressure flow.
Journal Article

A New Optical Access for Medium Speed Large Bore Marine Engines under Full-Load Operating Conditions

2021-05-26
Abstract The following work presents a new concept for optical accessibility of a single-cylinder medium-speed large-bore marine engine from the concept development to the implementation and feasibility investigation in a test bench observing the flame chemiluminescence of dual-fuel (DF) combustion. The design’s feasibility is verified using conjugated heat transfer (CHT) and finite element method (FEM) simulation during the whole design process presented herein. Assumptions made for the simulation, e.g., of the mount between the optical component and the steel engine parts, are evaluated in pretesting setups presented and described as follows. The optical access is made to withstand steady-state full-load operating conditions and is proofed so. The optical access is designed for an engine with a bore of 350 mm and a stroke of 440 mm.
Journal Article

A Novel Approach to Light Detection and Ranging Sensor Placement for Autonomous Driving Vehicles Using Deep Deterministic Policy Gradient Algorithm

2024-01-31
Abstract This article presents a novel approach to optimize the placement of light detection and ranging (LiDAR) sensors in autonomous driving vehicles using machine learning. As autonomous driving technology advances, LiDAR sensors play a crucial role in providing accurate collision data for environmental perception. The proposed method employs the deep deterministic policy gradient (DDPG) algorithm, which takes the vehicle’s surface geometry as input and generates optimized 3D sensor positions with predicted high visibility. Through extensive experiments on various vehicle shapes and a rectangular cuboid, the effectiveness and adaptability of the proposed method are demonstrated. Importantly, the trained network can efficiently evaluate new vehicle shapes without the need for re-optimization, representing a significant improvement over classical methods such as genetic algorithms.
Journal Article

A Novel Approach to Test Cycle-Based Engine Calibration Technique Using Genetic Algorithms to Meet Future Emissions Standards

2020-08-11
Abstract Heavy-duty (HD) diesel engines are the primary propulsion systems in use within the transportation sector and are subjected to stringent oxides of nitrogen (NOx) and particulate matter (PM) emission regulations. The objective of this study is to develop a robust calibration technique to optimize HD diesel engine for performance and emissions to meet current and future emissions standards during certification and real-world operations. In recent years, California - Air Resources Board (C-ARB) has initiated many studies to assess the technology road maps to achieve Ultra-Low NOx emissions for HD diesel applications [1]. Subsequently, there is also a major push for the complex real-world driving emissions as the confirmatory and certification testing procedure in Europe and Asia through the UN-ECE and ISO standards.
Journal Article

A Novel Cloud-Based Additive Manufacturing Technique for Semiconductor Chip Casings

2022-08-02
Abstract The demand for contactless, rapid manufacturing has increased over the years, especially during the COVID-19 pandemic. Additive manufacturing (AM), a type of rapid manufacturing, is a computer-based system that precisely manufactures products. It proves to be a faster, cheaper, and more efficient production system when integrated with cloud-based manufacturing (CBM). Similarly, the need for semiconductors has grown exponentially over the last five years. Several companies could not keep up with the increasing demand for many reasons. One of the main reasons is the lack of a workforce due to the COVID-19 protocols. This article proposes a novel technique to manufacture semiconductor chips in a fast-paced manner. An algorithm is integrated with cloud, machine vision, sensors, and email access to monitor with live feedback and correct the manufacturing in case of an anomaly.
Journal Article

A Novel Reference Property-Based Approach to Predict Properties of Diesel Blended with Biodiesel Produced from Different Feedstocks

2021-12-22
Abstract Considering the biodiesel composition, blend percentage, and temperature as input variables in the models to predict biodiesel-diesel blends’ properties is imperative. However, there are no models available in the literature to predict the properties of biodiesel-diesel blends that consider all these variables. The accuracy of spray and combustion models for diesel engines depends on the accuracy at which the fuel properties are estimated. Thus, straightforward approaches to accurately predict the properties of biodiesel-diesel blends are required. A novel reference property-based approach is proposed in the present work to predict the biodiesel-diesel blends’ properties to address this research gap. Models available in the literature correlating the properties of interest to fuel temperature were modified by including a reference property measured at 293 K.
Journal Article

A Parametric Thoracic Spine Model Accounting for Geometric Variations by Age, Sex, Stature, and Body Mass Index

2023-09-20
Abstract In this study, a parametric thoracic spine (T-spine) model was developed to account for morphological variations among the adult population. A total of 84 CT scans were collected, and the subjects were evenly distributed among age groups and both sexes. CT segmentation, landmarking, and mesh morphing were performed to map a template mesh onto the T-spine vertebrae for each sampled subject. Generalized procrustes analysis (GPA), principal component analysis (PCA), and linear regression analysis were then performed to investigate the morphological variations and develop prediction models. A total of 13 statistical models, including 12 T-spine vertebrae and a spinal curvature model, were combined to predict a full T-spine 3D geometry with any combination of age, sex, stature, and body mass index (BMI). A leave-one-out root mean square error (RMSE) analysis was conducted for each node of the mesh predicted by the statistical model for every T-spine vertebra.
Journal Article

A Review of Cavitation Phenomenon and Its Influence on the Spray Atomization in Diesel Injector Nozzles

2023-12-15
Abstract In view of the combustion efficiency and emission performance, various new clean combustion modes put forward higher requirements for the performance of the fuel injection system, and the cavitating two-phase flow characteristics in the injector nozzle have a significant impact on the spray atomization and combustion performance. This article comprehensively discusses and summarizes the factors that affect cavitation and the effectiveness of cavitation, and presents the research status and existent problems under each factor. Among them, viscosity factors are a hot research topic that researchers are passionate about, and physical properties factors still have the value of further in-depth research. However, the importance of material surface factors ranks last since the nozzle material was determined. Establishing a more comprehensive cavitation–atomization model considering various factors is the focus of research on cavitation phenomena.
Journal Article

A Review on Hydroxy Gas Enrichment for Internal Combustion Engines

2022-12-20
Abstract The long-term use of conventional liquid energy sources for internal combustion (IC) engines has its own negative ramifications on the health of living beings and the ecosystem at large. The search for solutions to overcome these implications brings us to one of the domains of research called alternative fuels. Alternative fuels may be used to enrich or fully substitute conventional fuels. In this review, a literature study on the enrichment of a primary fuel using hydroxy gas (HOH) produced from the electrolysis of water is discussed. The experimental evidence shows that HOH induction between 5 and 10 liters per minute (lpm) enhances the results of performance parameters coupled with a decrease in emission levels except for the oxides of nitrogen (NOx). However, this shortfall is nullified using techniques such as exhaust gas recirculation (EGR) and water injection.
Journal Article

A Study Examining the Effects of Driver Profile and Route Characteristics on Vehicle Performance and Tailpipe Emissions under Virtual Real Driving Scenarios

2022-05-06
Abstract The design of the modern aftertreatment system to meet Real Driving Emissions (RDE) regulations is a significant challenge faced by manufacturers today. This is because testing vehicles under RDE conditions is both time consuming and expensive. In this study, we quantify the effect of real driving conditions on vehicle performance (efficiency and emissions) using a system model comprised of vehicle and aftertreatment subsystems, built using the commercial simulation software GT-SUITE. The developed system model will allow manufacturers to predict vehicle performance and prospective emissions under real driving conditions early in the development cycle and to ensure compliance with current and future regulations. The engine used in this study is a 2.0 L turbocharged diesel engine, while the aftertreatment system consists of a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and a selective catalytic reduction (SCR).
X