Refine Your Search

Topic

Search Results

Journal Article

A Bibliographical Review of Electrical Vehicles (xEVs) Standards

2018-04-18
Abstract This work puts presents an all-inclusive state of the art bibliographical review of all categories of electrified transportation (xEVs) standards, issued by the most important standardization organizations. Firstly, the current status for the standards by major organizations is presented followed by the graphical representation of the number of standards issued. The review then takes into consideration the interpretation of the xEVs standards developed by all the major standardization organizations across the globe. The standards are differentiated categorically to deliver a coherent view of the current status followed by the explanation of the core of these standards. The ISO, IEC, SAE, IEEE, UL, ESO, NTCAS, JARI, JIS and ARAI electrified transportation vehicles xEV Standards from USA, Europe, Japan, China and India were evaluated. A total approximated of 283 standards in the area have been issued.
Journal Article

A Literature Review of Simulation Fidelity for Autonomous-Vehicle Research and Development

2023-05-25
Abstract This article explores the value of simulation for autonomous-vehicle research and development. There is ample research that details the effectiveness of simulation for training humans to fly and drive. Unfortunately, the same is not true for simulations used to train and test artificial intelligence (AI) that enables autonomous vehicles to fly and drive without humans. Research has shown that simulation “fidelity” is the most influential factor affecting training yield, but psychological fidelity is a widely accepted definition that does not apply to AI because it describes how well simulations engage various cognitive functions of human operators. Therefore, this investigation reviewed the literature that was published between January 2010 and May 2022 on the topic of simulation fidelity to understand how researchers are defining and measuring simulation fidelity as applied to training AI.
Journal Article

A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation

2023-04-10
Abstract With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation.
Journal Article

A Model Study for Prediction of Performance of Automotive Interior Coatings: Effect of Cross-Link Density and Film Thickness on Resistance to Solvents and Chemicals

2019-03-27
Abstract Automotive interior coatings for flexible and rigid substrates represent an important segment within automotive coating space. These coatings are used to protect plastic substrates from mechanical and chemical damage, in addition to providing colour and design aesthetics. These coatings are expected to resist aggressive chemicals, fluids, and stains while maintaining their long-term physical appearance and mechanical integrity. Designing such coatings, therefore, poses significant challenges to the formulators in effectively balancing these properties. Among many factors affecting coating properties, the cross-link density (XLD) and solubility parameter (δ) of coatings are the most predominant factors.
Journal Article

A Novel Approach for the Frequency Shift of a Single Component Eigenmode through Mass Addition in the Context of Brake Squeal Reduction

2022-09-23
Abstract Brake squeal reduces comfort for the vehicle occupants, damages the reputation of the respective manufacturer, and can lead to financial losses due to cost-intensive repair measures. Mode coupling is mainly held responsible for brake squeal today. Two adjacent eigenfrequencies converge and coalesce due to a changing bifurcation parameter. Several approaches have been developed to suppress brake squeal through structural changes. The main objective is to increase the distance of coupling eigenfrequencies. This work proposes a novel approach to structural modifications and sizing optimization aiming for a start at shifting a single component eigenfrequency. Locations suitable for structural changes are derived such that surrounding modes do not significantly change under the modifications. The positions of modifications are determined through a novel sensitivity calculation of the eigenmode to be shifted in frequency.
Journal Article

A Novel Fitting Method of Electrochemical Impedance Spectroscopy for Lithium-Ion Batteries Based on Random Mutation Differential Evolution Algorithm

2021-10-28
Abstract Electrochemical impedance spectroscopy (EIS) is widely used to diagnose the state of health (SOH) of lithium-ion batteries. One of the essential steps for the diagnosis is to analyze EIS with an equivalent circuit model (ECM) to understand the changes of the internal physical and chemical processes. Due to numerous equivalent circuit elements in the ECM, existing parameter identification methods often fail to meet the requirements in terms of identification accuracy or convergence speed. Therefore, this article proposes a novel impedance model parameter identification method based on the random mutation differential evolution (RMDE) algorithm. Compared with methods such as nonlinear least squares, it does not depend on the initial values of the parameters. The method is compared with chaos particle swarm optimization (CPSO) algorithm and genetic algorithm (GA), showing advantages in many aspects.
Journal Article

A Review Paper on Recent Research of Noise and Vibration in Electric Vehicle Powertrain Mounting System

2021-10-01
Abstract The Noise, Vibration, and Harshness (NVH) performance of automotive powertrain (PT) mounts involves the PT source vibration, PT mount stiffness, road input, and overall transfer path design. Like safety, performance, and durability driving dynamics, vehicle-level NVH also plays a major contributing factor for electric vehicle (EV) refinement. This article highlights the recent research on PT mounting-related NVH controls on electric cars. This work’s main contribution lies in the comparative study of the internal combustion engine (ICE)-based PT mounting and EV-based PT mounting system (PMS) with specific EV challenges. Various literature on PT mounts from the passive, semi-active, and active mounting systems are studied. The parameter optimization technique for mount stiffness and location by various research papers is summarized to understand the existing methodologies and research gap in EV application.
Journal Article

A Review of Intelligence-Based Vehicles Path Planning

2023-07-28
Abstract Numerous researchers are committed to finding solutions to the path planning problem of intelligence-based vehicles. How to select the appropriate algorithm for path planning has always been the topic of scholars. To analyze the advantages of existing path planning algorithms, the intelligence-based vehicle path planning algorithms are classified into conventional path planning methods, intelligent path planning methods, and reinforcement learning (RL) path planning methods. The currently popular RL path planning techniques are classified into two categories: model based and model free, which are more suitable for complex unknown environments. Model-based learning contains a policy iterative method and value iterative method. Model-free learning contains a time-difference algorithm, Q-learning algorithm, state-action-reward-state-action (SARSA) algorithm, and Monte Carlo (MC) algorithm.
Journal Article

A Review of Sensor Technologies for Automotive Fuel Economy Benefits

2018-12-11
Abstract This article is a review of automobile sensor technologies that have the potential to enhance fuel economy. Based on an in-depth review of the literature and demonstration projects, the following sensor technologies were selected for evaluation: vehicular radar systems (VRS), camera systems (CS), and vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems. V2V and V2I systems were found to have the highest merit in improving fuel economy over a wide range of integration strategies, with fuel economy improvements ranging from 5 to 20% with V2V and 10 to 25% for V2I. However, V2V and V2I systems require significant adoption for practical application which is not expected in this decade. Numerous academic studies and contemporary vehicular safety systems attest VRS as more technologically mature and robust relative to other sensors. However, VRS offers less fuel economy enhancement (~14%).
Journal Article

A Review on Electromagnetic Sheet Metal Forming of Continuum Sheet Metals

2019-05-29
Abstract Electromagnetic forming (EMF) is a high-speed impulse forming process developed during the 1950s and 1960s to acquire shapes from sheet metal that could not be obtained using conventional forming techniques. In order to attain required deformation, EMF process applies high Lorentz force for a very short duration of time. Due to the ability to form aluminum and other low-formability materials, the use of EMF of sheet metal for automobile parts has been rising in recent years. This review gives an inclusive survey of historical progress in EMF of continuum sheet metals. Also, the EMF is reviewed based on analytical approach, finite element method (FEM) simulation-based approach and experimental approach, on formability of the metals.
Journal Article

A Review on Physical Mechanisms of Tire-Pavement Interaction Noise

2019-05-16
Abstract Tire-pavement interaction noise (TPIN) dominates for passenger cars above 40 km/h and trucks above 70 km/h. Numerous studies have attempted to uncover and distinguish the basic mechanisms of TPIN. However, intense debate is still ongoing about the validity of these mechanisms. In this work, the physical mechanisms proposed in the literature were reviewed and divided into three categories: generation mechanisms, amplification mechanisms, and attenuation mechanisms. The purpose of this article is to gather the published general opinions for further open discussions.
Journal Article

A Study on Lightweight Design of Automotive Front Rails Using Tailored Blanks by Nonlinear Structural Optimization

2018-11-07
Abstract Tailored blanks offer great lightweighting opportunities for automotive industry and were applied on the front rails of a sedan in this research. To achieve the most efficient material usage, all the front rail parts were tailored into multiple sheets with the gauge of each sheet defined as a design variable for optimization. The equivalent static loads (ESL) method was adopted for linear optimization and the Insurance Institute for Highway Safety (IIHS) moderate overlap frontal crash as the nonlinear analysis load case. The torsion and bending stiffness of the sedan body in white (BIW) were set as design constraints. The occupant compartment intrusion in IIHS moderate overlap front crash was set as design objective to be minimized. The optimal thickness configuration for the tailored front rail designs was obtained through ESL optimization for multiple mass saving targets.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Journal Article

Active Suspension: Future Lessons from The Past

2018-06-18
Abstract Active suspension was a topic of great research interest near the end of last century. Ultimately broad bandwidth active systems were found to be too expensive in terms of both energy and financial cost. This past work, developing the ultimate vehicle suspension, has relevance for today’s vehicle designers working on more efficient and effective suspension systems for practical vehicles. From a control theorist’s perspective, it provides an interesting case study in the use of “practical” knowledge to allow “better” performance than predicted by theoretically optimal linear controllers. A brief history of active suspension will be introduced. Peter Wright, David Williams, and others at Lotus developed their Lotus modal control concept. In a parallel effort, Dean Karnopp presented the notion of inertial (Skyhook) damping. These concepts will be compared, the combination of these two distinctly different efforts will be discussed, and eventual vehicle results presented.
Journal Article

Aerodynamic Analysis of Cooling Airflow for Different Front-End Designs of a Heavy-Duty Cab-Over-Engine Truck

2018-04-07
Abstract Improving the aerodynamics of heavy trucks is an important consideration in the strive for more energy-efficient vehicles. Cooling drag is one part of the total aerodynamic resistance acting on a vehicle, which arises as a consequence of air flowing through the grille area, the heat exchangers, and the irregular under-hood area. Today cooling packages of heavy trucks are dimensioned for a critical cooling case, typically when the vehicle is driving fully laden, at low speed up a steep hill. However, for long-haul trucks, mostly operating at highway speeds on mostly level roads, it may not be necessary to have all the cooling airflow from an open-grille configuration. It can therefore be desirable for fuel consumption purposes, to shut off the entire cooling airflow, or a portion of it, under certain driving conditions dictated by the cooling demands. In Europe, most trucks operating on the roads are of cab-over-engine type, as a consequence of the length legislations present.
Journal Article

An Investigation on Drilling of Epoxy Composites by Taguchi Method

2021-04-21
Abstract Effects of process parameters such as rotational speed, feed rate, and drill diameters on the drilling behavior of basalt-epoxy-based composites including 2.5 wt.% Al2O3 particles manufactured by mixing and compression method were investigated by Taguchi’s technique. The experimental results showed that the burr height (BH) increased considerably almost linearly with an increase in the drill diameter, while it remained stable with speed and decreased the feed rate slightly. There was an excellent correlation between the control factors and responses, BH of basalt fiber-reinforced plastics (BFRPs) through the Taguchi approach. The model had an adjusted R2 value of 96.3%. Generally, the inclusion of Al2O3 particles in BFRP increased its cutting force properties. Optimized drilling conditions for the input variables to produce the lowest response of the BH for composites were rotational speed of 560 rpm and feed rate of 0.28 mm/rev and a drill diameter of 4.5 mm.
Journal Article

Analysis and Optimization of Aerodynamic Noise in Vehicle Based on Acoustic Perturbation Equations and Statistical Energy Analysis

2022-03-31
Abstract In this article, the method based on the combination of the acoustic perturbation equations and the statistical energy analysis has been used to simulate and optimize the interior aerodynamic noise of a large sport utility vehicle model. The reliability of the method was verified by comparing the analysis results with the wind tunnel test. Influenced by the main noise sources such as A-pillar, exterior rearview mirror, and front sidewindow, the wind noise of the model was significantly greater than that of the same class. To improve the wind noise performance, the side mirror was optimized with the method, including the minimum distance between the rearview mirror and the triangle trim cover, the angle between the rearview mirror and the front sidewindow, and the shell groove of the rearview mirror. The simulation results show that the overall sound pressure level in the car decreases by 2.12 dBA and the articulation index increases by 4.04% after optimization.
Journal Article

Analysis and Optimization of Automotive Self-Priming Door Lock Closing Sound

2023-04-04
Abstract With higher customer expectations and advances in vehicular technology, automotive functions and operations are becoming more intelligent. Electric self-priming door locks fulfil the automatic closing and locking of side doors, hatchback doors, sliding doors, liftgates, decklids, etc. They are widely implemented into high-end models for the elegance of soft closing. In the list of perceived vehicle qualities, door-closing sound quality has been one of the important customer concerns in the market. In comparison to conventional door locks, electric self-priming door locks add another dimension to the development of sound quality for noise, vibration, and harshness (NVH) efforts. In this article, the characteristics of door-closing sound involving self-priming door lock mechanisms are analyzed and illustrated. Human perception of different sounds from the self-priming door lock working process is ranked by subjective evaluations.
Journal Article

Analysis of Lateral Stability and Ride of an Indian Railway Constrained Dual-Axle Bogie Frame

2022-11-10
Abstract This article investigates the lateral dynamic behavior of a two-wheel axle bogie frame of an Indian railway vehicle. The influence of the different parameters of the vehicle on stability is investigated. The model is formulated by assigning 10 degrees of freedom (DoF) to the system with yaw and lateral DoF assigned to the bogie frame and vertical, lateral, roll, and yaw DoF assigned to each wheel axle. Linear creep force and moments suggested by Kalker’s linear theory of creep have been accounted for in the analysis. The stability analysis is carried out by transforming the second-order differential equations into first-order differential equations using state-space representation. The present model is validated by comparing the eigenvalues of the analytical model with the same obtained from the finite element (FE) model. The results obtained from the analytical and FE model are in good agreement.
X