Refine Your Search

Topic

Search Results

Journal Article

100 Years of Corrosion Testing—Is It Time to Move beyond the ASTM D130? The Wire Corrosion and Conductive Deposit Tests

2023-09-22
Abstract The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century.
Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Journal Article

A Comparative Analysis of Metaheuristic Approaches (Genetic Algorithm/Hybridization of Genetic Algorithms and Simulated Annealing) for Planning and Scheduling Problem with Energy Aspect

2021-05-20
Abstract This article discusses a multi-item planning and scheduling problem in a job-shop system with consideration of energy consumption. Planning is considered by a set of periods, each one is characterized by a demand, energy, and length. Scheduling is determined by the sequences of jobs on available resources. A Mixed-Integer Linear Programming (MILP) problem is formulated to integrate planning and scheduling, it is considered as an NP-difficult problem. A Genetic Algorithm (GA) is then developed to solve the MILP, and then a hybridized approach of simulated annealing with genetic algorithm (HGASA) is presented to optimize the results. Finally, numerical results are presented and analyzed to evaluate the effectiveness of the proposed algorithms.
Journal Article

A Cylinder Pressure-Based Knock Detection Method for Pre-chamber Ignition Gasoline Engine

2021-02-26
Abstract A pre-chamber ignition system has the potential to reduce the burn duration of lean-burn gasoline engine combustion and can achieve a reduced knock occurrence from the distributed ignition sources. Pre-chamber ignition produces high-velocity turbulent jets, and these jets often reach sonic velocity and produce shock waves inside the combustion chamber. These shock waves make knock detection difficult with a conventional surface-mounted acoustic knock sensor. This article discusses how an acoustic knock sensor works with a pre-chamber ignition and evaluates different cylinder pressure-based knock detection strategies and proposes a method that eliminates the influence of jet-induced oscillations on knock detection.
Journal Article

A Global Sensitivity Analysis Approach for Engine Friction Modeling

2019-08-21
Abstract Mechanical friction simulations offer a valuable tool in the development of internal combustion engines for the evaluation of optimization studies in terms of time efficiency. However, system modeling and evaluation of model performance may be highly complex. A high number of interacting submodels and parameters as well as a limited model transparency contribute to uncertainties in the modeling process. In particular, model calibration and validation are complicated by the unknown effect of parameters on the model output. This article presents an advanced and model-independent methodology for identifying sensitive parameters of engine friction. This allows the user to investigate an unlimited number of parameters of a model whose structure and properties are prior unknown.
Journal Article

A Guide to Uncertainty Quantification for Experimental Engine Research and Heat Release Analysis

2019-08-22
Abstract Performing an uncertainty analysis for complex measurement tasks, such as those found in engine research, presents unique challenges. Also, because of the excessive computational costs, modeling-based approaches, such as a Monte Carlo approach, may not be practical. This work provides a traditional statistical approach to uncertainty analysis that incorporates the uncertainty tree, which is a graphical tool for complex uncertainty analysis. Approaches to calculate the required sensitivities are discussed, including issues associated with numerical differentiation, numerical integration, and post-processing. Trimming of the uncertainty tree to remove insignificant contributions is discussed. The article concludes with a best practices guide in the Appendix to uncertainty propagation in experimental engine combustion post-processing, which includes suggested post-processing techniques and down-selected functional relationships for uncertainty propagation.
Journal Article

A Method for Improvement in Data Quality of Heat Release Metrics Utilizing Dynamic Calculation of Cylinder Compression Ratio

2019-10-29
Abstract One of the key factors for accurate mass burn fraction and energy conversion point calculations is the accuracy of the compression ratio. The method presented in this article suggests a workflow that can be applied to determine or correct the compression ratio estimated geometrically or measured using liquid displacement. It is derived using the observation that, in a motored engine, the heat losses are symmetrical about a certain crank angle, which allows for the derivation of an expression for the clearance volume [1]. In this article, a workflow is implemented in real time, in a current production engine indicating system. The goal is to improve measurement data quality and stability for the energy conversion points calculated during measurement procedures. Experimental and simulation data is presented to highlight the benefits and improvement that can be achieved, especially at the start of combustion.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

A Multiscale Cylinder Bore Honing Pattern Lubrication Model for Improved Engine Friction

2019-07-02
Abstract Three-dimensional patterns representing crosshatched plateau-honed cylinder bores based on two-dimensional Fast Fourier Transform (FFT) of measured surfaces were generated and used to calculate pressure flow, shear-driven flow, and shear stress factors. Later, the flow and shear stress factors obtained by numerical simulations for various surface patterns were used to calculate lubricant film thickness and friction force between piston ring and cylinder bore contact in typical diesel engine conditions using a mixed lubrication model. The effects of various crosshatch honing angles, such as 30°, 45°, and 60°, and texture heights on engine friction losses, wear, and oil consumption were discussed in detail. It is observed from numerical results that lower lubricant film thickness values are generated with higher honing angles, particularly in mixed lubrication regime where lubricant film thickness is close to the roughness level, mainly due to lower resistance to pressure flow.
Journal Article

A Numerical Methodology to Test the Lubricant Oil Evaporation and Its Thermal Management-Related Properties Derating in Hydrogen-Fueled Engines

2023-09-15
Abstract Due to the incoming phase out of fossil fuels from the market in order to reduce the carbon footprint of the automotive sector, hydrogen-fueled engines are candidate mid-term solution. Thanks to its properties, hydrogen promotes flames that poorly suffer from the quenching effects toward the engine walls. Thus, emphasis must be posed on the heat-up of the oil layer that wets the cylinder liner in hydrogen-fueled engines. It is known that motor oils are complex mixtures of a number of mainly heavy hydrocarbons (HCs); however, their composition is not known a priori. Simulation tools that can support the early development steps of those engines must be provided with oil composition and properties at operation-like conditions. The authors propose a statistical inference-based optimization approach for identifying oil surrogate multicomponent mixtures. The algorithm is implemented in Python and relies on the Bayesian optimization technique.
Journal Article

A Parametric Thoracic Spine Model Accounting for Geometric Variations by Age, Sex, Stature, and Body Mass Index

2023-09-20
Abstract In this study, a parametric thoracic spine (T-spine) model was developed to account for morphological variations among the adult population. A total of 84 CT scans were collected, and the subjects were evenly distributed among age groups and both sexes. CT segmentation, landmarking, and mesh morphing were performed to map a template mesh onto the T-spine vertebrae for each sampled subject. Generalized procrustes analysis (GPA), principal component analysis (PCA), and linear regression analysis were then performed to investigate the morphological variations and develop prediction models. A total of 13 statistical models, including 12 T-spine vertebrae and a spinal curvature model, were combined to predict a full T-spine 3D geometry with any combination of age, sex, stature, and body mass index (BMI). A leave-one-out root mean square error (RMSE) analysis was conducted for each node of the mesh predicted by the statistical model for every T-spine vertebra.
Journal Article

A Synthetic Ash-Loading Method for Gasoline Particulate Filters with Active Oil Injection

2021-03-22
Abstract To reduce particulate emissions, the use of particulate filters in diesel engines is meanwhile state of the art, while the integration of such systems in gasoline engines is now also necessary in order to comply with today’s regulations. Over its lifetime, a gasoline particulate filter (GPF) collects ash components of fuel, lubrication oil, and materials originating from the catalytic coating and from engine abrasion. In the development and application process, synthetic ashing from GPFs is challenging. The ash of the lubrication oil can be increased in various ways, like oil-doped fuel, a separate oil burner, or changes in the piston-cylinder system of the engine. However, these methods show major disadvantages.
Journal Article

Acid Neutralization Rates—Why Total Base Number Doesn’t Tell the Whole Story: Understanding the Neutralization of Organic Acid in Engine Oils

2021-09-15
Abstract The acidification of lubricating oils during engine operation, and the subsequent additive neutralization, is an important challenge for Original Equipment Manufacturers and end-users. Often the decline in Total Base Number (TBN) and increase in Total Acid Number (TAN) is measured during engine operation as an indication of the oil’s condition and lifetime. This is clearly an oversimplification given that no consideration is given to the type of acid, how corrosive it is, or the type of base and how effective it is at neutralizing. Acids can be broadly categorized into mineral acids such as sulfuric/nitric and organic acids such as acetic. Traditionally, research has focused on understanding the effects of mineral acids such as sulfuric, which can be formed during the combustion of sulfur-containing fuel.
Journal Article

Acid Neutralization Rates—Why Total Base Number Doesn’t Tell the Whole Story: Understanding How the Colloidal Structure of Overbased Detergents Influences Acid Neutralization Rates

2021-03-30
Abstract Neutralization of acidic contaminants in engine lubricating oil is an important topic for engine manufacturers. Often, the deterioration in total base number (TBN) and increase in total acid number (TAN) during engine test operation is used as an indication of oil lifetime. This is clearly an oversimplification given that no consideration is given to how corrosive the acid is, and how effective the base is at neutralizing different acids. The work detailed here will explore how the presence of inorganic acids can be combated by lubricant additives, such as overbased detergents, through rapid neutralization. To achieve this, stopped-flow UV/visible spectroscopy has been used to measure the reaction kinetics between an overbased detergent and sulfuric acid containing water-in-oil (w/o) microemulsion droplets. The key structural properties of overbased detergents that contribute to effective acid neutralization will be explored.
Journal Article

Advanced, Guided Procedure for the Calibration and Generalization of Neural Network-Based Models of Combustion and Knock Indexes

2023-08-30
Abstract In the last few years, the artificial neural networks have been widely used in the field of engine modeling. Some of the main reasons for this are, their compatibility with the real-time systems, higher accuracy, and flexibility if compared to other data-driven approaches. One of the main difficulties of using this approach is the calibration of the network itself. It is very difficult to find in the literature procedures that guide the user to completely define a network. Typically, the very last steps (like the choice of the number of neurons) must be selected by the user on the base of his sensitivity to the problem.
Journal Article

Air Percolation Analysis for Multiphase Flow Using Volume of Fluid Approach

2021-02-19
Abstract We come across multiphase flow (oil and air) in many applications in automotive, aerospace, marine, chemical, and power grid industries. The present study presents a model that describes the flow of oil and air through an orifice from one chamber to another based on gravity, viscosity, and density difference. The aim of this study is to provide a simulation technique that finds the total time required for the complete percolation of oil/air to drain out from the respective chambers. This technique uses the Volume Of Fluid (VOF) using the Computational Fluid Dynamics (CFD) software STAR CCM+. VOF technique is a multiphase model and is very effective in determining the free-surface phenomenon. This technique uses an implicit unsteady and k-ε turbulence model at ambient conditions. Test results validate the CFD analysis. There is a good agreement between the simulation and test results.
Journal Article

An Experimental Study on Frictional Losses of Coated Piston Rings with Symmetric and Asymmetric Geometry

2021-05-25
Abstract An increase in the efficiency of internal combustion engines is a key challenge for engineers today. Mechanical losses contribute significantly to engine inefficiency, and the piston assembly has the largest share in these losses. Various measures are therefore taken to reduce friction between the piston and the rings against the cylinder. However, the undertaken changes most frequently generate new challenges. For instance, lowering the viscosity of the engine oil or increasing the engine load may lead to accelerated wear of the mating surfaces. In order to resolve this problem, more and more complex materials and anti-wear coatings have to be used. Furthermore, under these conditions, the shape of the ring’s sliding surface becomes more important. This article presents the results of experimental research on the influence of the geometry of the sliding surface and the use of various anti-wear coatings.
Journal Article

An Investigation of the Effects of the Piston Bowl Geometries of a Heavy-Duty Engine on Performance and Emissions Using Direct Dual Fuel Stratification Strategy, and Proposing Two New Piston Profiles

2020-03-16
Abstract Direct dual fuel stratification (DDFS) strategy benefits the advantages of the RCCI and PPC strategies simultaneously. DDFS has improved control over the heat release rate, by injecting a considerable amount of fuel near TDC, compared to RCCI. In addition, the third injection (near TDC) is diffusion-limited. Consequently, piston bowl geometry directly affects the formation of emissions. The modified piston geometry was developed and optimized for RCCI by previous scholars. Since all DDFS experimental tests were performed with the modified piston profile, the other piston profiles need to be investigated for this strategy. In this article, first, a comparative study between the three conventional piston profiles, including the modified, stock, and scaled pistons, was performed. Afterward, the gasoline injector position was shifted to the head cylinder center for the stock piston. NOX emissions were improved; however, soot was increased slightly.
Journal Article

Analysis of Dimensions of Surface Textures on Lubrication and Friction of an Engine

2021-06-10
Abstract To improve the lubrication and friction of the crankpin bearing (CB) in the engine, the design of surface textures on the bearing surface is proposed and researched based on the CB hydrodynamic dynamic model. To enhance the reliability of the research results and its closeness to reality, the optimal CB parameters, the experimental data of the external dynamic load W0 acting on the crankpin, and the CB surface roughness in the well-known existing researches are referred to as input data for the simulation process. The effect of the distribution density {n, m}, diameter D, and depth of the microcircular textures hd on improving the lubrication and friction are then analyzed based on the indexes of the increase in the oil film pressure, decrease in the solid asperity contacts in the mixed lubrication region (MLR), friction force, and coefficient of friction (COF) between the crankpin and bearing surfaces, respectively.
Journal Article

Analysis of Driving Performance Based on Driver Experience and Vehicle Familiarity: A UTDrive/Mobile-UTDrive App Study

2019-11-21
Abstract A number of studies have shown that driving an unfamiliar vehicle has the potential to introduce additional risk, especially for novice drivers. However, such studies have generally used statistical methods based on analyzing crash and near-crash data from a range of driver groups, and therefore the evaluation has the potential to be subjective and limited. For a more objective perspective, this study suggests that it would be worthwhile to consider vehicle dynamic signals obtained from the Controller Area Network (CAN-Bus) and smartphones. This study, therefore, is focused on the effect of driver experience and vehicle familiarity for issues in driver modeling and distraction. Here, a group of 20 drivers participated in our experiment, with 13 of them having participated again after a one-year time lapse in order for analysis of their change in driving performance.
X