Refine Your Search

Topic

Search Results

Journal Article

A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation

2023-04-10
Abstract With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation.
Journal Article

A Reduced-Order Modeling Framework for Simulating Signatures of Faults in a Bladed Disk

2022-08-29
Abstract This article reports a reduced-order modeling framework of bladed disks on a rotating shaft to simulate the vibration signature of faults in different components, aiming toward simulated data-driven machine learning. We have employed lumped and one-dimensional analytical models of the subcomponents for better insight into the complex dynamic response. The framework addresses some of the challenges encountered in analyzing and optimizing fault detection and identification schemes for health monitoring of aeroengines and other rotating machinery. We model the bladed disks and shafts by combining lumped elements and one-dimensional finite elements, leading to a coupled system. The simulation results are in good agreement with previously published data. We model and analyze the cracks in a blade with their effective reduced stiffness approximation.
Journal Article

A Review on Electromagnetic Sheet Metal Forming of Continuum Sheet Metals

2019-05-29
Abstract Electromagnetic forming (EMF) is a high-speed impulse forming process developed during the 1950s and 1960s to acquire shapes from sheet metal that could not be obtained using conventional forming techniques. In order to attain required deformation, EMF process applies high Lorentz force for a very short duration of time. Due to the ability to form aluminum and other low-formability materials, the use of EMF of sheet metal for automobile parts has been rising in recent years. This review gives an inclusive survey of historical progress in EMF of continuum sheet metals. Also, the EMF is reviewed based on analytical approach, finite element method (FEM) simulation-based approach and experimental approach, on formability of the metals.
Journal Article

An Investigation on Drilling of Epoxy Composites by Taguchi Method

2021-04-21
Abstract Effects of process parameters such as rotational speed, feed rate, and drill diameters on the drilling behavior of basalt-epoxy-based composites including 2.5 wt.% Al2O3 particles manufactured by mixing and compression method were investigated by Taguchi’s technique. The experimental results showed that the burr height (BH) increased considerably almost linearly with an increase in the drill diameter, while it remained stable with speed and decreased the feed rate slightly. There was an excellent correlation between the control factors and responses, BH of basalt fiber-reinforced plastics (BFRPs) through the Taguchi approach. The model had an adjusted R2 value of 96.3%. Generally, the inclusion of Al2O3 particles in BFRP increased its cutting force properties. Optimized drilling conditions for the input variables to produce the lowest response of the BH for composites were rotational speed of 560 rpm and feed rate of 0.28 mm/rev and a drill diameter of 4.5 mm.
Journal Article

Analytical Structural Stress and Stress Intensity Factor Solutions for Similar and Dissimilar Spot Welds in Cross-Tension Specimens

2020-08-11
Abstract New analytical structural stress solutions for a rigid inclusion in a finite square thin plate with clamping edges under opening loading conditions are developed. The new solutions are used to derive new analytical structural stress and stress intensity factor solutions for similar and dissimilar spot welds in cross-tension specimens. Three-dimensional finite element analyses are conducted to obtain the stress intensity factor solutions for similar spot welds and dissimilar magnesium/steel spot welds in cross-tension specimens of equal thickness with different ratios of half-specimen width-to-weld radius. A comparison of the analytical and computational solutions indicates that the analytical stress intensity factor solutions for similar spot welds in cross-tension specimens of equal thickness are accurate for large ratios of half-specimen width-to-weld radius.
Journal Article

Application of Topology Optimization to Reduce Automotive Exhaust Emissions

2021-09-03
Abstract In automotive, the use of heavy structure leads to high consumptions of fuel and resulting high exhaust (CO2) emissions. To curb this problem, nowadays, the conventional steel used for years in automotive structures is currently replaced with other different lightweight materials such as aluminum, magnesium, glass fiber-reinforced polymer, carbon fiber-reinforced polymer, titanium, and so on. On the other hand, compared to the known steel properties and performances, these lightweight materials offer challenging issues related to life cycle, recycling, cost, and manufacturing. But, more than sometimes, reaching the same levels of performances with materials different from steel presents huge difficulties. This represents the cause of researching strategies and techniques to optimize the material distribution and the performances of a component, saving material and consequently reducing weight.
Journal Article

Assessing the Characterization for Multiple Cones and Cone Portions Utilizing X-Ray Diffraction in Single Point Incremental Forming

2023-12-06
Abstract Single point incremental forming (SPIF) is a robust and new technique. In the recent research scenario, materials properties such as microstructure, micro-texture analysis, and crystal structure can be accessed through characterization non-destructive techniques, e.g., scanning electron microscope (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). XRD is a non-destructive method for analyzing the fine structure of materials. This study explores how process variables such as wall angle, step size, feed rate, and forming speed affect the parts of large-, medium-, and small-sized truncated cones of aluminum alloy AA3003-O sheet. Several cone parts of truncated cones are used in this investigation to implement Scherrer’s method. The two primary determining factors peak height and crystallite size are assessed for additional analysis in the present research.
Journal Article

Automated Guided Vehicles for Small Manufacturing Enterprises: A Review

2018-09-17
Abstract Automated guided vehicle systems (AGVS) are the prominent one in modern material handling systems used in small manufacturing enterprises (SMEs) due to their exciting features and benefits. This article pinpoints the need of AGVS in SMEs by describing the material handling selection in SMEs and enlightening recent technological developments and approaches of the AGVS. Additionally, it summarizes the analytical and simulation-based tools utilized in design problems of AGVS along with the influence of material handling management and key hurdles of AGVS. The current study provides a limelight towards making smart automated guided vehicles (AGVs) with the simplified and proper routing system and favorable materials and more importantly reducing the cost and increasing the flexibility.
Journal Article

CAN-Bus Remote Monitoring: Standalone CAN Sensor Reading and Automotive Diagnostics

2019-02-08
Abstract A vehicle may be a font of data for some applications in safety, maintenance, and entertainment systems, once its electronic control units are connected to each other by a Controller Area Network (CAN) bus. By plugging a compatible device on the vehicle onboard diagnostics interface, reading raw data or conducting automotive diagnostics by International Standardization Organization 15765 and Society of Automotive Engineers J1979 is possible. The usual low-cost CAN data acquisition devices do not allow the connection to a cloud service for remote monitoring. Looking at this issue, this work proposes a low-cost NodeMCU CAN shield for data acquisition which is able to read the CAN frame of a Steering Angle Sensor, in Scenario 1, and standardized information from a vehicle such as its speed, identification number, and engine coolant temperature by automotive diagnostics, in Scenario 2.
Journal Article

Cabin Thermal Management Analysis for SuperTruck II Next-Generation Hybrid Electric Truck Design

2021-09-09
Abstract This article presents a multistage, coupled thermal management simulation approach, informed by physical testing where available, to aid design decisions for PACCAR’s SuperTruck II hybrid truck cabin concept. Focus areas include cabin insulation, battery sizing, and sleeper curtain position, as well as heating, ventilating, and air-conditioning (HVAC) component and accessory configurations, to maintain or improve thermal comfort while saving energy. The authors analyzed weather data and determined the national vehicle miles traveled weighted temperature and solar conditions for long-haul trucks. Example weather day profiles were selected to approximate the 5th and 95th percentile weighted conditions. A daylong drive cycle was developed to impose appropriate external wind conditions during rest and driving periods.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Comparative Study on the Effect of Different Lubricating Oil Additives on the Tribological Properties of Bearing Steel

2020-01-23
Abstract The purpose of this article is to study the antifriction and anti-wear effect of GCr15 bearing steel under paraffin base oil and the base oil with two additives of T405 sulfurized olefin and nano-MoS2 and compare the synergistic lubrication effect of two different additives (MoS2 and T405) in paraffin base oil. The tribological properties of GCr15 bearing steel under different lubrication conditions were tested on a ball-on-disk tribometer. The three-dimensional profile of disk’s worn surfaces and the scanning electron microscope (SEM) micrographs of corresponding steel balls were analyzed at the same time. The wettability of lubricating oils on the surface of friction pairs and the dispersibility of MoS2 in base oil were characterized.
Journal Article

Comparison of Formability between Steel and Aluminum Fender Panels

2021-06-02
Abstract Reducing a vehicle’s weight is an efficient method to reduce energy consumption. Aluminum alloy is the best material for lightweight automobiles. However, the poor formability of aluminum means that it is difficult to develop stamping dies. This study designs a suitable forming tool for aluminum fenders. A simulation and an experiment are used to analyze the formability of aluminum fenders. A theoretical calculation, experimental testing, and sampling comparison are used to verify the design. The material properties of steel and aluminum are firstly studied and compared. The results show that a traditional S-type blank die face design is not suitable for aluminum because of its low tensile strength and the potential for elongation. A relatively flat trapezoid blank die face design is proposed to smooth the variation. However, a flat die face for a trapezoidal blank limits stretching, so another design is essential to improve the formability.
Journal Article

Computationally Analyzing the Impact of Spherical Depressions on the Sides of Hatchback Cars

2021-01-19
Abstract Fuel consumption is at an all-time high, with crude oil set to get depleted in the next two decades. Drag force is one of the major components responsible for decreasing mileage and thus increasing fuel consumption in vehicles. Using passive modifications such as spherical depressions on the body surface, aerodynamic drag experienced by passenger vehicles can be significantly reduced. Spherical depressions are designed to delay flow separation, following which the wake size is reduced, resulting in a decrease in drag force. In this study, computer-aided design (CAD) models of generalized lightweight vehicles are made with dimples at the sides of the car, having a diameter of 60 mm and a center-to-center distance of 90 mm. Several models are created having depression aspect ratios (ARs) of 2, 4, 6, and 8, and each model is simulated to velocities of 22 m/s, 24 m/s, 26 m/s, 28 m/s, and 30 m/s.
Journal Article

Conceptualization and Modeling of a Flywheel-Based Regenerative Braking System for a Commercial Electric Bus

2019-11-19
Abstract The following article illustrates the detailed study of the development of a unique flywheel-based regenerative braking system (f-RBS) for achieving regenerative braking in a commercial electric bus. The f-RBS is designed for installation in the front wheels of the bus. The particular data values for modeling the bus are taken from multiple legitimate sources to illustrate the development strategy of the regenerative braking system. Mechanical components used in this system have either been carefully designed and analyzed for avoiding fatigue failure or their market selection strategies explained. The positioning of the entire system is decided using MSC Adams View®, hence determining a suitable component placement strategy such that the f-RBS components do not interfere with the bus components. The entire system is modeled on MATLAB Simulink® with sufficient accuracy to get various results that would infer the performance of the system as a whole.
Journal Article

Crashworthiness Performance of Multi-Cornered Structures under Quasi-Static Compression and Dynamic Axial Loading Conditions

2020-08-11
Abstract With increased consumer demand for fuel efficient vehicles as well as more stringent greenhouse gas regulations and/or Corporate Average Fuel Economy (CAFE) standards from governments around the globe, the automotive industry, including the OEM (Original Equipment Manufacturers) and suppliers, is working diligently to innovate in all areas of vehicle design. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, mass reduction has been identified as an important strategy in future vehicle development. In this article, the development, analysis, and experiment of multi-cornered structures are presented. To achieve mass reduction, two non-traditional multi-cornered structures, with twelve- and sixteen-cornered cross-sections, were developed separately by using computer simulations.
Journal Article

Criticality of Prognostics in the Operations of Autonomous Aircraft

2023-06-28
Abstract This article addresses the design, testing, and evaluation of rigorous and verifiable prognostic and health management (PHM) functions applied to autonomous aircraft systems. These PHM functions—many deployed as algorithms—are integrated into a holistic framework for integrity management of aircraft components and systems that are subject to both operational degradation and incipient failure modes. The designer of a comprehensive and verifiable prognostics system is faced with significant challenges. Data (both baseline and faulted) that are correlated, time stamped, and appropriately sampled are not always readily available. Quantifying uncertainty, and its propagation and management, which are inherent in prognosis, can be difficult. High-fidelity modeling of critical components/systems can consume precious resources. Data mining tools for feature extraction and selection are not easy to develop and maintain.
Journal Article

Damping of Powder Metal Rings

2020-05-21
Abstract Powder metallurgy is a widely used manufacturing methodology in the gearbox industry. Noise and vibration is a common cause for concern in the gearbox industry due to the continuous contact between gear teeth at high rotational frequencies. Despite this, limited research has been performed investigating the modal properties of powder metal products. This work investigates the damping ratios of a copper-infiltrated steel powder metal ring and a hot-rolled steel ring both experimentally and computationally. Negligible difference was observed between the damping ratios of the powder metal and hot-rolled steel rings. Two proportional damping models were investigated to predict the damping ratios of the powder metal ring. It was found that the Caughey damping model was the most accurate, generating damping ratios within 2.36% for a frequency bandwidth of up to 4000 Hz.
Journal Article

Data-Driven Modeling of Hybrid Vehicle Vibration on Roads with Low Surface Friction

2020-04-06
Abstract This research aimed to develop a principle model with the goal of clarifying the mechanism of vibration generated in a hybrid vehicle braking on a road with partially low surface friction. One conventional analysis method involves the application of detailed CAE models that enable the implementation of precise analysis. However, issues of this method include complexity and the time required to measure the characteristics (such as stiffness) of various components. In contrast, another conventional method is to apply simple models. Although the simplicity of these models facilitates the fitting of model parameters with experimental data, such models cannot always express the necessary mechanism and it is unknown which degrees of freedom should be considered. To help resolve these issues, this article applies an experiment-based method for hybrid vehicles that adopt a different approach to these conventional methods.
Journal Article

Design and Analysis of Aircraft Lift Bag

2021-02-12
Abstract Aircraft lift bag is the equipment used for the recovery of an aircraft and is considered as a lifting equipment. Boeing 737 is a domestic aircraft considered for designing this bag. The aircraft lift bag is made of composite material, and the most widely used materials are nylon and neoprene. A composite material is used to make the bag lightweight and easy to handle. For calculation of properties and the engineering constant of the respective composite materials, micromechanics approach is used, in which the method of Representative Volume Element (RVE) is taken into consideration. The loading and boundary conditions are the exact replica of the working conditions. The operation of this bag is completely pneumatic. The stresses induced in the bag are analyzed in finite element software and are compared with the calculated theoretical values. CATIA is used to model the bag, and ABAQUS is used for the finite element calculations.
X