Refine Your Search

Topic

Search Results

Journal Article

A Combined Experimental and Numerical Analysis on the Aerodynamics of a Carbon-Ceramic Brake Disc

2024-01-04
Abstract Composite ceramic brake discs are made of ceramic material reinforced with carbon fibers and offer exceptional advantages that translate directly into higher vehicle performance. In the case of an electric vehicle, it could increase the range of the vehicle, and in the case of conventional internal combustion engine vehicles, it means lower fuel consumption (and consequently lower CO2 emissions). These discs are typically characterized by complex internal geometries, further complicated by the presence of drilling holes on both friction surfaces. To estimate the aerothermal performance of these discs, and for the thermal management of the vehicle, a reliable model for predicting the air flowing across the disc channels is needed. In this study, a real carbon-ceramic brake disc with drilling holes was investigated in a dedicated test rig simulating the wheel corner flow conditions experimentally using the particle image velocimetry technique and numerically.
Journal Article

A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation

2023-04-10
Abstract With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation.
Journal Article

A Model Study for Prediction of Performance of Automotive Interior Coatings: Effect of Cross-Link Density and Film Thickness on Resistance to Solvents and Chemicals

2019-03-27
Abstract Automotive interior coatings for flexible and rigid substrates represent an important segment within automotive coating space. These coatings are used to protect plastic substrates from mechanical and chemical damage, in addition to providing colour and design aesthetics. These coatings are expected to resist aggressive chemicals, fluids, and stains while maintaining their long-term physical appearance and mechanical integrity. Designing such coatings, therefore, poses significant challenges to the formulators in effectively balancing these properties. Among many factors affecting coating properties, the cross-link density (XLD) and solubility parameter (δ) of coatings are the most predominant factors.
Journal Article

A Novel Durability Analysis Approach for High-Pressure Die Cast Aluminum Engine Block

2021-03-03
Abstract Lightweight and high-strength high-pressure die casting (HPDC) aluminum has been widely used in automotive components such as the cylinder block, lower crankcase extension, transmission case, and drive unit. Die cast parts have good surface finishes with relatively higher material strength in the casting skin than the center core material, maintain consistent features and tolerance, and maximize metal yield, therefore making it the most cost-effective casting process for mass production of aluminum parts. However, due to the rapid filling rates, the HPDC process tends to form large porosity and oxides because of the entrapped gas and solidification shrinkage, thereby deteriorating the mechanical properties of the casting parts.
Journal Article

A Practical Fail-Operational Steering Concept

2020-10-02
Abstract Automated vehicles require some level of subsystem redundancy, whether to allow a transition time for driver re-engagement (L3) or continued operation in a faulted state (L4+). Highly automated vehicle developers need to have safe miles accumulated by vehicles to assess system maturity and experience new environments. This article presents a conceptual framework suggesting that hardware newly available to commercial vehicle application can be used to form a steering system that will remain operational upon a failure. The key points of a provisional safety case are presented, giving hope that a complete safety case is possible. This article will provide autonomous vehicle developers a view of a near term possibility for a highly automated commercial vehicle steering solution.
Journal Article

An Investigation on Drilling of Epoxy Composites by Taguchi Method

2021-04-21
Abstract Effects of process parameters such as rotational speed, feed rate, and drill diameters on the drilling behavior of basalt-epoxy-based composites including 2.5 wt.% Al2O3 particles manufactured by mixing and compression method were investigated by Taguchi’s technique. The experimental results showed that the burr height (BH) increased considerably almost linearly with an increase in the drill diameter, while it remained stable with speed and decreased the feed rate slightly. There was an excellent correlation between the control factors and responses, BH of basalt fiber-reinforced plastics (BFRPs) through the Taguchi approach. The model had an adjusted R2 value of 96.3%. Generally, the inclusion of Al2O3 particles in BFRP increased its cutting force properties. Optimized drilling conditions for the input variables to produce the lowest response of the BH for composites were rotational speed of 560 rpm and feed rate of 0.28 mm/rev and a drill diameter of 4.5 mm.
Journal Article

Analytical Structural Stress and Stress Intensity Factor Solutions for Similar and Dissimilar Spot Welds in Cross-Tension Specimens

2020-08-11
Abstract New analytical structural stress solutions for a rigid inclusion in a finite square thin plate with clamping edges under opening loading conditions are developed. The new solutions are used to derive new analytical structural stress and stress intensity factor solutions for similar and dissimilar spot welds in cross-tension specimens. Three-dimensional finite element analyses are conducted to obtain the stress intensity factor solutions for similar spot welds and dissimilar magnesium/steel spot welds in cross-tension specimens of equal thickness with different ratios of half-specimen width-to-weld radius. A comparison of the analytical and computational solutions indicates that the analytical stress intensity factor solutions for similar spot welds in cross-tension specimens of equal thickness are accurate for large ratios of half-specimen width-to-weld radius.
Journal Article

Application of Topology Optimization to Reduce Automotive Exhaust Emissions

2021-09-03
Abstract In automotive, the use of heavy structure leads to high consumptions of fuel and resulting high exhaust (CO2) emissions. To curb this problem, nowadays, the conventional steel used for years in automotive structures is currently replaced with other different lightweight materials such as aluminum, magnesium, glass fiber-reinforced polymer, carbon fiber-reinforced polymer, titanium, and so on. On the other hand, compared to the known steel properties and performances, these lightweight materials offer challenging issues related to life cycle, recycling, cost, and manufacturing. But, more than sometimes, reaching the same levels of performances with materials different from steel presents huge difficulties. This represents the cause of researching strategies and techniques to optimize the material distribution and the performances of a component, saving material and consequently reducing weight.
Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
Journal Article

Assessing Viscosity in Hydro-Erosive Grinding Process via Refractometry

2019-08-22
Abstract The manufacturing of diesel injector nozzles requires precision processing to produce multiple micro-holes. An abrasive fluid containing a mixture of mineral oil and hard particles is used for rounding them, ensuring the hydrodynamics of the injection. As verified in a previous investigation, the viscosity of the fluid undergoes uncontrolled changes during hydro-erosive (HE) grinding. Such undesired viscosity changes are detrimental to the process and difficult to assess. The current investigation aims to study the possibility of using the refractive index of the oils used in the HE grinding for assessing their viscosities. A calibration curve correlating the refractive index and viscosity was obtained from the analysis of samples produced by mixing two distinct mineral oils in different proportions. The determined calibration curve was tested with 45 samples of filtered oil, collected directly from the tanks during the HE grinding.
Journal Article

Assessing the Safety of Environment Perception in Automated Driving Vehicles

2020-04-21
Abstract The development of automated driving systems (ADS) necessitates procedures to validate system safety. The reliability of an ADS’s environment perception provided by lidar, radar, and camera sensors is of special interest in this context, because perception errors can be safety-critical. In this article, we formalize the reliability-based validation of environment perception for safe automated driving and discuss associated challenges. We describe a potential solution to a perception reliability validation by deriving performance requirements at the sensor level. We then summarize statistical methods to learn sensor perception reliabilities in field tests, on proving grounds, and through virtual simulations. With the developed safety validation framework, we show that, potentially, one can validate the safety of an ADS with feasible test effort.
Journal Article

Automotive Components Fatigue and Durability Testing with Flexible Vibration Testing Table

2018-04-07
Abstract Accelerated durability testing of automotive components has become a major interest for the ground vehicle Industries. This approach can predict the life characteristics of the vehicle by testing fatigue failure at higher stress level within a shorter period of time. Current tradition of laboratory testing includes a rigid fixture to mount the component with the shaker table. This approach is not accurate for the durability testing of most vehicle components especially for those parts connected directly with the tire and suspension system. In this work, the effects of the elastic support on modal parameters of the tested structure, such as natural frequencies, damping ratios and mode shapes, as well as the estimated structural fatigue life in the durability testing were studied through experimental testing and numerical simulations.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Comparative Study on the Effect of Different Lubricating Oil Additives on the Tribological Properties of Bearing Steel

2020-01-23
Abstract The purpose of this article is to study the antifriction and anti-wear effect of GCr15 bearing steel under paraffin base oil and the base oil with two additives of T405 sulfurized olefin and nano-MoS2 and compare the synergistic lubrication effect of two different additives (MoS2 and T405) in paraffin base oil. The tribological properties of GCr15 bearing steel under different lubrication conditions were tested on a ball-on-disk tribometer. The three-dimensional profile of disk’s worn surfaces and the scanning electron microscope (SEM) micrographs of corresponding steel balls were analyzed at the same time. The wettability of lubricating oils on the surface of friction pairs and the dispersibility of MoS2 in base oil were characterized.
Journal Article

Comparative Study on the Fatigue Behavior of Jute-Wool Felt/Epoxy Hybrid and Glass Fiber/Epoxy Composite

2023-08-10
Abstract Currently, there is a growing tendency to incorporate natural fibers in composites due to their affordability, lightweight nature, and eco-friendliness. Researchers are continuously exploring new materials that offer improved mechanical properties for a broader range of applications. In this work, an experimental investigation on tensile and fatigue behavior of jute-wool felt-reinforced epoxy hybrid laminate is carried, in addition to an E-glass fiber-reinforced epoxy laminate that helps in comparison. Constant amplitude tensile fatigue test is conducted for 80%, 70%, and 60% of the ultimate load of respective composites at a stress ratio of 0.1 and frequency of 7 Hz for both laminates. The jute-wool felt composite showed good fatigue resistance. Though glass fiber composite showed higher tensile strength, jute-wool felt composite exhibits higher fatigue performance than glass fiber composites at higher stress levels.
Journal Article

Comparison of Formability between Steel and Aluminum Fender Panels

2021-06-02
Abstract Reducing a vehicle’s weight is an efficient method to reduce energy consumption. Aluminum alloy is the best material for lightweight automobiles. However, the poor formability of aluminum means that it is difficult to develop stamping dies. This study designs a suitable forming tool for aluminum fenders. A simulation and an experiment are used to analyze the formability of aluminum fenders. A theoretical calculation, experimental testing, and sampling comparison are used to verify the design. The material properties of steel and aluminum are firstly studied and compared. The results show that a traditional S-type blank die face design is not suitable for aluminum because of its low tensile strength and the potential for elongation. A relatively flat trapezoid blank die face design is proposed to smooth the variation. However, a flat die face for a trapezoidal blank limits stretching, so another design is essential to improve the formability.
Journal Article

Comparison of Genetic Algorithm and Taguchi Optimization Techniques for Surface Roughness of Natural Fiber-Reinforced Polymer Composites

2020-08-11
Abstract Climate change has necessitated the development of “green” alternatives to replace existing materials. This focus has resulted in the push toward fabricating natural fiber-reinforced polymer composites. This research work looks at the surface roughness (SR) of natural fibers like rice husk ash (RHA) and groundnut shell ash (GSA) reinforced in nine different concentrations into an epoxy matrix to form composites. Composite samples are fabricated using various concentrations of natural fibers and measures and optimizes for the SR through the implementation of genetic algorithms (GA). It was found that a minimum SR of 1.422 μm can be obtained for an epoxy/hardener ratio of 3:1 and without the addition of any reinforcements. This optimization was achieved within 102 generations. In addition to GA optimization, another optimization implementation was done through the Taguchi method.
Journal Article

Crashworthiness Performance of Multi-Cornered Structures under Quasi-Static Compression and Dynamic Axial Loading Conditions

2020-08-11
Abstract With increased consumer demand for fuel efficient vehicles as well as more stringent greenhouse gas regulations and/or Corporate Average Fuel Economy (CAFE) standards from governments around the globe, the automotive industry, including the OEM (Original Equipment Manufacturers) and suppliers, is working diligently to innovate in all areas of vehicle design. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, mass reduction has been identified as an important strategy in future vehicle development. In this article, the development, analysis, and experiment of multi-cornered structures are presented. To achieve mass reduction, two non-traditional multi-cornered structures, with twelve- and sixteen-cornered cross-sections, were developed separately by using computer simulations.
Journal Article

Damping of Powder Metal Rings

2020-05-21
Abstract Powder metallurgy is a widely used manufacturing methodology in the gearbox industry. Noise and vibration is a common cause for concern in the gearbox industry due to the continuous contact between gear teeth at high rotational frequencies. Despite this, limited research has been performed investigating the modal properties of powder metal products. This work investigates the damping ratios of a copper-infiltrated steel powder metal ring and a hot-rolled steel ring both experimentally and computationally. Negligible difference was observed between the damping ratios of the powder metal and hot-rolled steel rings. Two proportional damping models were investigated to predict the damping ratios of the powder metal ring. It was found that the Caughey damping model was the most accurate, generating damping ratios within 2.36% for a frequency bandwidth of up to 4000 Hz.
X