Refine Your Search

Topic

Search Results

Journal Article

100 Years of Corrosion Testing—Is It Time to Move beyond the ASTM D130? The Wire Corrosion and Conductive Deposit Tests

2023-09-22
Abstract The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century.
Journal Article

3D-Printed Antenna Design Using Graphene Filament and Copper Tape for High-Tech Air Components

2022-11-25
Abstract Additive manufacturing (AM) technologies can produce lighter parts; reduce manual assembly processes; reduce the number of production steps; shorten the production cycle; significantly reduce material consumption; enable the production of prostheses, implants, and artificial organs; and produce end-user products since it is used in many sectors for many reasons; it has also started to be used widely, especially in the field of aerospace. In this study, polylactic acid (PLA) was preferred for the antenna substrate because it is environmentally friendly, easy to recycle, provides convenience in production design with a three-dimensional (3D) printer, and is less expensive compared to other available materials. Copper (Cu) tape and graphene filament were employed for the antenna patch component due to their benefits.
Journal Article

A Brain Wave-Verified Driver Alert System for Vehicle Collision Avoidance

2021-04-30
Abstract Collision alert and avoidance systems (CAS) could help to minimize driver errors. They are instrumental as an advanced driver-assistance system (ADAS) when the vehicle is facing potential hazards. Developing effective ADAS/CAS, which provides alerts to the driver, requires a fundamental understanding of human sensory perception and response capabilities. This research explores the premise that external stimulation can effectively improve drivers’ reaction and response capabilities. Therefore this article proposes a light-emitting diode (LED)-based driver warning system to prevent potential collisions while evaluating novel signal processing algorithms to explore the correlation between driver brain signals and external visual stimulation. When the vehicle approaches emerging obstacles or potential hazards, an LED light box flashes to warn the driver through visual stimulation to avoid the collision through braking.
Journal Article

A Climate-Change Scorecard for United States Non-commercial Driver Education

2023-05-13
Abstract In the United States (USA), transportation is the largest single source of greenhouse gas (GHG) emissions, representing 27% of total GHGs emitted in 2020. Eighty-three percent of these came from road transport, and 57% from light-duty vehicles (LDVs). Internal combustion engine (ICE) vehicles, which still form the bulk of the United States (US) fleet, struggle to meet climate change targets. Despite increasingly stringent regulatory mechanisms and technology improvements, only three US states have been able to reduce their transport emissions to the target of below 1990 levels. Fifteen states have made some headway to within 10% of their 1990 baseline. Largely, however, it appears that current strategies are not generating effective results. Current climate-change mitigation measures in road transport tend to be predominantly technological.
Journal Article

A Comparative Analysis of Metaheuristic Approaches (Genetic Algorithm/Hybridization of Genetic Algorithms and Simulated Annealing) for Planning and Scheduling Problem with Energy Aspect

2021-05-20
Abstract This article discusses a multi-item planning and scheduling problem in a job-shop system with consideration of energy consumption. Planning is considered by a set of periods, each one is characterized by a demand, energy, and length. Scheduling is determined by the sequences of jobs on available resources. A Mixed-Integer Linear Programming (MILP) problem is formulated to integrate planning and scheduling, it is considered as an NP-difficult problem. A Genetic Algorithm (GA) is then developed to solve the MILP, and then a hybridized approach of simulated annealing with genetic algorithm (HGASA) is presented to optimize the results. Finally, numerical results are presented and analyzed to evaluate the effectiveness of the proposed algorithms.
Journal Article

A Hybrid Trajectory Planning Approach for Autonomous Rule–Compliant Multi-Vehicle Oval Racing

2023-09-07
Abstract Motion planning for autonomous vehicles remains challenging, especially in environments with multiple vehicles and high speeds. Autonomous racing offers an opportunity to develop algorithms that can deal with such situations and adds the requirement of following race rules. We propose a hybrid local planning approach capable of generating rule-compliant trajectories at the dynamic limits for multi-vehicle oval racing. The planning method is based on a spatiotemporal graph, which is searched in a two-step process to exploit the dynamic limits on the one hand and achieve a long planning horizon on the other. We introduce a soft-checking procedure that can handle cases where no collision-free, feasible, or rule-compliant solutions are found to restore an admissible state as quickly as possible. We also present a state machine explicitly designed for fully autonomous operation on a racetrack, acting on a higher level of the planning algorithm.
Journal Article

A K-Seat-Based PID Controller for Active Seat Suspension to Enhance Motion Comfort

2022-02-16
Abstract Autonomous vehicles (AVs) are expected to have a great impact on mobility by decreasing commute time and vehicle fuel consumption and increasing safety significantly. However, there are still issues that can jeopardize their wide impact and their acceptance by the public. One of the main limitations is motion sickness (MS). Hence, the last year’s research is focusing on improving motion comfort within AVs. On one hand, users are expected to perceive AVs driving style as more aggressive, as it might result in excessive head and body motion. Therefore, speed reduction should be considered as a countermeasure of MS mitigation. On the other hand, the excessive reduction of speed can have a negative impact on traffic. At the same time, the user’s dissatisfaction, i.e., acceptance and subjective comfort, will increase due to a longer journey time.
Journal Article

A Kinematic Modeling Framework for Prediction of Instantaneous Status of Towing Vehicle Systems

2018-04-18
Abstract A kinematic modeling framework was established to predict status (position, displacement, velocity, acceleration, and shape) of a towing vehicle system with different driver inputs. This framework consists of three components: (1) a state space model to decide position and velocity for the vehicle system based on Newton’s second law; (2) an angular acceleration transferring model, which leads to a hypothesis that the each towed unit follows the same path as the towing vehicle; and (3) a polygon model to draw instantaneous polygons to envelop the entire system at any time point.
Journal Article

A Literature Review of Simulation Fidelity for Autonomous-Vehicle Research and Development

2023-05-25
Abstract This article explores the value of simulation for autonomous-vehicle research and development. There is ample research that details the effectiveness of simulation for training humans to fly and drive. Unfortunately, the same is not true for simulations used to train and test artificial intelligence (AI) that enables autonomous vehicles to fly and drive without humans. Research has shown that simulation “fidelity” is the most influential factor affecting training yield, but psychological fidelity is a widely accepted definition that does not apply to AI because it describes how well simulations engage various cognitive functions of human operators. Therefore, this investigation reviewed the literature that was published between January 2010 and May 2022 on the topic of simulation fidelity to understand how researchers are defining and measuring simulation fidelity as applied to training AI.
Journal Article

A Method for Measuring In-Plane Forming Limit Curves Using 2D Digital Image Correlation

2023-04-10
Abstract With the introduction of advanced lightweight materials with complex microstructures and behaviors, more focus is put on the accurate determination of their forming limits, and that can only be possible through experiments as the conventional theoretical models for the forming limit curve (FLC) prediction fail to perform. Despite that, CAE engineers, designers, and toolmakers still rely heavily on theoretical models due to the steep costs associated with formability testing, including mechanical setup, a large number of tests, and the cost of a stereo digital image correlation (DIC) system. The international standard ISO 12004-2:2021 recommends using a stereo DIC system for formability testing since two-dimensional (2D) DIC systems are considered incapable of producing reliable strains due to errors associated with out-of-plane motion and deformation.
Journal Article

A Multiscale Cylinder Bore Honing Pattern Lubrication Model for Improved Engine Friction

2019-07-02
Abstract Three-dimensional patterns representing crosshatched plateau-honed cylinder bores based on two-dimensional Fast Fourier Transform (FFT) of measured surfaces were generated and used to calculate pressure flow, shear-driven flow, and shear stress factors. Later, the flow and shear stress factors obtained by numerical simulations for various surface patterns were used to calculate lubricant film thickness and friction force between piston ring and cylinder bore contact in typical diesel engine conditions using a mixed lubrication model. The effects of various crosshatch honing angles, such as 30°, 45°, and 60°, and texture heights on engine friction losses, wear, and oil consumption were discussed in detail. It is observed from numerical results that lower lubricant film thickness values are generated with higher honing angles, particularly in mixed lubrication regime where lubricant film thickness is close to the roughness level, mainly due to lower resistance to pressure flow.
Journal Article

A New Approach for Development of a High-Performance Intake Manifold for a Single-Cylinder Engine Used in Formula SAE Application

2019-07-26
Abstract The Formula SAE (FSAE) is an international engineering competition where a Formula style race car is designed and built by students from worldwide universities. According to FSAE regulation, an air restrictor with circular cross section of 20 mm for gasoline-fuelled and 19 mm for E-85-fuelled vehicles is to be incorporated between the throttle valve and engine inlet. The sole purpose of this regulation is to limit the airflow to the engine used. The only sequence allowed is throttle valve, restrictor and engine inlet. A new approach of combining ram theory and acoustic theory methods are investigated to increase the performance of the engine by designing an optimized intake runner for a particular engine speed range and an optimized plenum volume in this range. Engine performance characteristics such as brake power, brake torque and volumetric efficiency are taken into considerations.
Journal Article

A New Optimal Design of Stable Feedback Control of Two-Wheel System Based on Reinforcement Learning

2023-04-26
Abstract The two-wheel system design is widely used in various mobile tools, such as remote-control vehicles and robots, due to its simplicity and stability. However, the specific wheel and body models in the real world can be complex, and the control accuracy of existing algorithms may not meet practical requirements. To address this issue, we propose a double inverted pendulum on mobile device (DIPM) model to improve control performances and reduce calculations. The model is based on the kinetic and potential energy of the DIPM system, known as the Euler-Lagrange equation, and is composed of three second-order nonlinear differential equations derived by specifying Lagrange. We also propose a stable feedback control method for mobile device drive systems. Our experiments compare several mainstream reinforcement learning (RL) methods, including linear quadratic regulator (LQR) and iterative linear quadratic regulator (ILQR), as well as Q-learning, SARSA, DQN (Deep Q Network), and AC.
Journal Article

A Novel Approach for Integrating the Optimization of the Lifetime and Cost of Manufacturing of a New Product during the Design Phase

2021-05-13
Abstract Maximum lifetime and minimum manufacturing cost for new products are the primary goals of companies for competitiveness. These two objectives are contradictory and the geometric dimensions of the products directly control them. In addition, the earlier design errors of new products are predicted, the easier and more inexpensive their rectification becomes. To achieve these objectives, we propose in this article a novel model that makes it possible to solve the problem of optimizing the lifespan and the manufacturing cost of new products during the phase of their design. The prediction of the life of the products is carried out by an energy damage method implemented on the finite element (FE) calculation by using the ABAQUS software. The manufacturing cost prediction is carried out by applying the ABC cost estimation analytical method. In addition, the optimization problem is solved by the method of genetic algorithms.
Journal Article

A Novel Cloud-Based Additive Manufacturing Technique for Semiconductor Chip Casings

2022-08-02
Abstract The demand for contactless, rapid manufacturing has increased over the years, especially during the COVID-19 pandemic. Additive manufacturing (AM), a type of rapid manufacturing, is a computer-based system that precisely manufactures products. It proves to be a faster, cheaper, and more efficient production system when integrated with cloud-based manufacturing (CBM). Similarly, the need for semiconductors has grown exponentially over the last five years. Several companies could not keep up with the increasing demand for many reasons. One of the main reasons is the lack of a workforce due to the COVID-19 protocols. This article proposes a novel technique to manufacture semiconductor chips in a fast-paced manner. An algorithm is integrated with cloud, machine vision, sensors, and email access to monitor with live feedback and correct the manufacturing in case of an anomaly.
Journal Article

A Novel Durability Analysis Approach for High-Pressure Die Cast Aluminum Engine Block

2021-03-03
Abstract Lightweight and high-strength high-pressure die casting (HPDC) aluminum has been widely used in automotive components such as the cylinder block, lower crankcase extension, transmission case, and drive unit. Die cast parts have good surface finishes with relatively higher material strength in the casting skin than the center core material, maintain consistent features and tolerance, and maximize metal yield, therefore making it the most cost-effective casting process for mass production of aluminum parts. However, due to the rapid filling rates, the HPDC process tends to form large porosity and oxides because of the entrapped gas and solidification shrinkage, thereby deteriorating the mechanical properties of the casting parts.
Journal Article

A Numerical Methodology to Test the Lubricant Oil Evaporation and Its Thermal Management-Related Properties Derating in Hydrogen-Fueled Engines

2023-09-15
Abstract Due to the incoming phase out of fossil fuels from the market in order to reduce the carbon footprint of the automotive sector, hydrogen-fueled engines are candidate mid-term solution. Thanks to its properties, hydrogen promotes flames that poorly suffer from the quenching effects toward the engine walls. Thus, emphasis must be posed on the heat-up of the oil layer that wets the cylinder liner in hydrogen-fueled engines. It is known that motor oils are complex mixtures of a number of mainly heavy hydrocarbons (HCs); however, their composition is not known a priori. Simulation tools that can support the early development steps of those engines must be provided with oil composition and properties at operation-like conditions. The authors propose a statistical inference-based optimization approach for identifying oil surrogate multicomponent mixtures. The algorithm is implemented in Python and relies on the Bayesian optimization technique.
Journal Article

A Parametric Thoracic Spine Model Accounting for Geometric Variations by Age, Sex, Stature, and Body Mass Index

2023-09-20
Abstract In this study, a parametric thoracic spine (T-spine) model was developed to account for morphological variations among the adult population. A total of 84 CT scans were collected, and the subjects were evenly distributed among age groups and both sexes. CT segmentation, landmarking, and mesh morphing were performed to map a template mesh onto the T-spine vertebrae for each sampled subject. Generalized procrustes analysis (GPA), principal component analysis (PCA), and linear regression analysis were then performed to investigate the morphological variations and develop prediction models. A total of 13 statistical models, including 12 T-spine vertebrae and a spinal curvature model, were combined to predict a full T-spine 3D geometry with any combination of age, sex, stature, and body mass index (BMI). A leave-one-out root mean square error (RMSE) analysis was conducted for each node of the mesh predicted by the statistical model for every T-spine vertebra.
Journal Article

A Pedal Map Setting Method for Considering the Controllability of Vehicle Speed

2021-02-26
Abstract To solve the problem that it is difficult for drivers to control the vehicle at low speed, a new setting scheme of pedal map is proposed to ensure that the vehicle has the speed controllability in the full speed range. In this scheme, based on obtaining the maximum and minimum driving characteristics of the vehicle and the driving resistance characteristics of the vehicle, the pedal map is divided into a sensitive area and insensitive area. In the insensitive area, acceleration hysteresis is formed, which ensures that the throttle is slightly fluctuated and has good speed stability. At the same time, the sensitive area of the accelerator pedal is formed far away from the driving resistance curve to ensure that the vehicle has a great acceleration ability. To verify the effectiveness of the proposed scheme, the data of a commercial vehicle is selected for the design of the pedal map, and the driver-vehicle closed-loop test based on the driving simulator is conducted.
Journal Article

A Personalized Lane-Changing Model for Advanced Driver Assistance System Based on Deep Learning and Spatial-Temporal Modeling

2019-11-14
Abstract Lane changes are stressful maneuvers for drivers, particularly during high-speed traffic flows. However, modeling driver’s lane-changing decision and implementation process is challenging due to the complexity and uncertainty of driving behaviors. To address this issue, this article presents a personalized Lane-Changing Model (LCM) for Advanced Driver Assistance System (ADAS) based on deep learning method. The LCM contains three major computational components. Firstly, with abundant inputs of Root Residual Network (Root-ResNet), LCM is able to exploit more local information from the front view video data. Secondly, the LCM has an ability of learning the global spatial-temporal information via Temporal Modeling Blocks (TMBs). Finally, a two-layer Long Short-Term Memory (LSTM) network is used to learn video contextual features combined with lane boundary based distance features in lane change events.
X