Refine Your Search

Topic

Search Results

Journal Article

A Comparative Analysis of Metaheuristic Approaches (Genetic Algorithm/Hybridization of Genetic Algorithms and Simulated Annealing) for Planning and Scheduling Problem with Energy Aspect

2021-05-20
Abstract This article discusses a multi-item planning and scheduling problem in a job-shop system with consideration of energy consumption. Planning is considered by a set of periods, each one is characterized by a demand, energy, and length. Scheduling is determined by the sequences of jobs on available resources. A Mixed-Integer Linear Programming (MILP) problem is formulated to integrate planning and scheduling, it is considered as an NP-difficult problem. A Genetic Algorithm (GA) is then developed to solve the MILP, and then a hybridized approach of simulated annealing with genetic algorithm (HGASA) is presented to optimize the results. Finally, numerical results are presented and analyzed to evaluate the effectiveness of the proposed algorithms.
Journal Article

A Dynamic Method to Analyze Cold-Start First Cycles Engine-Out Emissions at Elevated Cranking Speed Conditions of a Hybrid Electric Vehicle Including a Gasoline Direct Injection Engine

2022-02-11
Abstract The cold crank-start stage, including the first three engine cycles, is responsible for a significant amount of the cold-start phase emissions in a Gasoline Direct Injection (GDI) engine. The engine crank-start is highly transient due to substantial engine speed changes, Manifold Absolute Pressure (MAP) dynamics, and in-cylinder temperatures. Combustion characteristics change depending on control inputs variations, including throttle angle and spark timing. Fuel injection strategy, timing, and vaporization dynamics are other parameters causing cold-start first cycles analysis to be more complex. Hybrid Electric Vehicles (HEVs) provide elevated cranking speed, enabling technologies such as cam phasing to adjust the valve timing and throttling, and increased fuel injection pressure from the first firings.
Journal Article

A Fundamental Analysis for Steady-State Operation of Linear Internal Combustion Engine-Linear Generator Integrated System

2022-03-18
Abstract Linear internal combustion engine-linear generator integrated system (LICELGIS) is an innovative energy conversion device with the ability of converting mechanical energy into electrical energy, which allows it to be a range extender for hybrid vehicles. This article presents a fundamental analysis for the steady-state operation of the LICELGIS, concentrating on electromagnetic force and motion characteristics. Simple assumptions are made to represent ideal gases instantaneous heat release and rejection. Based on assumptions, sensitivity analysis is carried out for key factors of electromagnetic force. The theoretical velocity model in mathematics is derived from analyzing the LICELGIS theory model. It shows that fuel injection quantity and stroke length are the most sensitive factors in key parameters. The piston velocity around the top dead center (TDC) changes greater than that at any other position, which is caused by the combustion process.
Journal Article

A Novel Approach towards Stable and Low Emission Stratified Lean Combustion Employing Two Solenoid Multi-Hole Direct Injectors

2018-04-18
Abstract Stratified lean combustion has proven to be a promising approach for further increasing the thermal efficiency of gasoline direct injection engines in low load conditions. In this work, a new injection strategy for stratified operation mode is introduced. A side and a central-mounted solenoid multi-hole injector are simultaneously operated in a single-cylinder engine. Thermodynamic investigations show that this concept leads to improved stability, faster combustion, reduced particle number emissions, and lower fuel consumption levels compared to using only one injector. Experiments at an optical engine and three-dimensional computational fluid dynamics (CFD) simulations explain the improvements by a more compact mixture and reduced piston wetting with two injectors. Finally, the application of external EGR in combination with the above concept allows NOx emissions to be effectively kept at a low level while maintaining a stable operation.
Journal Article

A Novel Combustion Chamber to Physically Stratify the Charge in a Gasoline Direct Injection Engine

2022-05-17
Abstract Realizing the potential of the gasoline direct injection (GDI) concept lies in effectively stratifying the charge at different engine operating conditions. This is generally obtained by properly directing the air and fuel through carefully oriented intake port(s) and fuel spray and appropriately changing injection parameters. However, robust methods of charge stratification are essential to extend the lean operating range, particularly in small GDI engines. In this work, a novel piston shape was developed for a 200 cm3, single-cylinder, four-stroke gasoline engine to attain charge stratification. Stratification of charge is achieved even when the fuel was injected early in the intake stroke by a specially shaped wedge on the piston crown that produced twin vortices during compression and physically separated the charge into two sides in the combustion chamber.
Journal Article

A Novel Durability Analysis Approach for High-Pressure Die Cast Aluminum Engine Block

2021-03-03
Abstract Lightweight and high-strength high-pressure die casting (HPDC) aluminum has been widely used in automotive components such as the cylinder block, lower crankcase extension, transmission case, and drive unit. Die cast parts have good surface finishes with relatively higher material strength in the casting skin than the center core material, maintain consistent features and tolerance, and maximize metal yield, therefore making it the most cost-effective casting process for mass production of aluminum parts. However, due to the rapid filling rates, the HPDC process tends to form large porosity and oxides because of the entrapped gas and solidification shrinkage, thereby deteriorating the mechanical properties of the casting parts.
Journal Article

A Review and Perspective on Particulate Matter Indices Linking Fuel Composition to Particulate Emissions from Gasoline Engines

2021-10-08
Abstract Particulate matter (PM) indices—those linking PM emissions from gasoline engines to the composition and properties of the fuel—have been a topic of significant study over the last decade. It has long been known that fuel composition has a significant impact on particulate emissions from gasoline engines. Since gasoline direct injection (GDI) engines have become the market-leading technology, this has become more significant because the evaporative behavior of fuel increases in importance. Several PM indices have been developed to provide metrics describing this behavior and correlating PM emissions. In this article, 16 different PM indices are identified and collected—to the authors’ knowledge, all of the indices are available at the time of writing. The indices are reviewed and discussed in the context of the information required to calculate them, as well as their utility.
Journal Article

A Review of Cavitation Phenomenon and Its Influence on the Spray Atomization in Diesel Injector Nozzles

2023-12-15
Abstract In view of the combustion efficiency and emission performance, various new clean combustion modes put forward higher requirements for the performance of the fuel injection system, and the cavitating two-phase flow characteristics in the injector nozzle have a significant impact on the spray atomization and combustion performance. This article comprehensively discusses and summarizes the factors that affect cavitation and the effectiveness of cavitation, and presents the research status and existent problems under each factor. Among them, viscosity factors are a hot research topic that researchers are passionate about, and physical properties factors still have the value of further in-depth research. However, the importance of material surface factors ranks last since the nozzle material was determined. Establishing a more comprehensive cavitation–atomization model considering various factors is the focus of research on cavitation phenomena.
Journal Article

A Review of Ultra-lean and Stratified Charged Combustion in Natural Gas Spark Ignition Engines

2023-03-15
Abstract Natural gas (NG) can be compressed to a high pressure of around 200 bar for use in engines and other applications. Compressed natural gas (CNG) contains 87–92% methane (CH4) and has a low carbon-to-hydrogen ratio compared to other hydrocarbon (HC) fuels. Due to this, it can potentially reduce carbon dioxide (CO2) emissions by more than 20% compared to conventional fuels like diesel or gasoline. This makes CNG one of the most environmentally friendly fuels for internal combustion engines (ICEs). To improve the thermal efficiency of ICEs, higher compression ratios (CRs) and leaner combustion are essential. Since CNG is a gaseous fuel, it has several advantages over liquid fuels due to its favorable physical and chemical properties. A few of these advantages are minimal fuel evaporation issues, a low-carbon content in the fuel composition and a high-octane number. The CNG high-octane number allows for a high CR, resulting in higher thermal efficiency and lower emissions.
Journal Article

A Review of the Effects of Gasoline Detergent Additives on the Formation of Combustion Chamber Deposits of Gasoline Direct Injection Engines

2021-03-30
Abstract Evaluating the effects of deposits formed in existing engines on their performance is essential, particularly for gasoline direct injection (GDI) engines, wherein such deposits can be even more problematic. Furthermore, it has been suggested that some gasoline detergent additives (GDAs) may increase combustion chamber deposit (CCD) formation. However, there is a lack of data available regarding CCD formation in GDI engines, and there are no systematic investigations of the effects of the relationship between detergent additives and CCD formation on the GDI engines operation. Thus, the aim of this article was to critically review the existing literature on the effects of the deposit buildup associated with GDAs on the knocking performance, emissions, and operational properties of GDI engines. Surveyed studies showed that, GDI engines produce higher amounts of CCDs compared with port fuel injection (PFI) engines.
Journal Article

A Unique Application of Gasoline Particulate Filter Pressure Sensing Diagnostics

2021-08-06
Abstract Gasoline particulate filters (GPFs) are important aftertreatment components that enable gasoline direct injection (GDI) engines to meet European Union (EU) 6 and China 6 particulate number emissions regulations for nonvolatile particles greater than 23 nm in diameter. GPFs are rapidly becoming an integral part of the modern GDI aftertreatment system. The Active Exhaust Tuning (EXTUN) Valve is a butterfly valve placed in the tailpipe of an exhaust system that can be electronically positioned to control exhaust noise levels (decibels) under various vehicle operating conditions. This device is positioned downstream of the GPF, and variations in the tuning valve position can impact exhaust backpressures, making it difficult to monitor soot/ash accumulation or detect damage/removal of the GPF substrate. The purpose of this work is to present a unique example of subsystem control and diagnostic architecture for an exhaust system combining GPF and EXTUN.
Journal Article

Air Motion Induced by Ultra-High Injection Pressure Sprays for Gasoline Direct Injection Engines

2020-09-17
Abstract The fuel injection pressures used in gasoline direct injection (GDI) engines have increased in recent years to improve fuel efficiency and reduce emissions. Current GDI engines use injection pressures of up to 350 bar, and there is evidence that even higher fuel injection pressures could yield further improvements in atomization. Higher injection pressures could also improve mixture formation by increasing the spray velocity; however, the research with higher injection pressures over 1000 bar is limited due to a limit of mechanical components. This manuscript summarizes experimental investigations into the effect of injection pressure, injection mass, and nozzle shape on spray-induced air motion with ultrahigh injection pressure over 1000 bar.
Journal Article

An Improved Physics-Based Combustion Modeling Approach for Control of Direct Injection Diesel Engines

2020-07-01
Abstract Cycle-by-cycle combustion prediction in real time during engine operation can serve as a vital input for operating at optimal performance conditions and for emission control. In this work, a real-time capable physics-based combustion model has been proposed for the prediction of the heat release rate in a direct injection diesel engine. The model extends the approaches proposed earlier in the literature by considering spray dynamics such as spray penetration and Sauter mean diameter in order to calculate the mass of evaporated fuel from the spray. Wall impingement of the liquid spray is predicted by considering the liquid length based on the prevailing in-cylinder conditions. These effects are considered even after the hydraulic end of injection till the last droplet of fuel impinges on the combustion chamber wall. The fuel evaporated from the wall film and its contribution to the kinetic energy of the charge are also considered.
Journal Article

Analysis of Regulated Pollutant Emissions and Aftertreatment Efficiency in a GTDi Engine Using Different SOI Strategies

2018-06-25
Abstract In order to improve performance and minimize pollutant emissions in gasoline turbocharged direct-injection (GTDi) engines, different injection strategies and technologies are being investigated. The inclusion of exhaust gas recirculation (EGR) and the variation of the start of injection (SOI) are some of these strategies that can influence the air-to-fuel (AF) mixture formation and consequently in the combustion process and pollutant emissions. This paper presents a complete study of the engine performance, pollutant emissions and aftertreatment efficiency that produces the SOI variation with a fixed EGR rate in a 4-cylinder, turbocharged, gasoline direct-injection engine with 2.0 L displacement. The equipment used in this study are TSI-EEPS for particle measurement and HORIBA MEXA 1230-PM for soot measurement being HORIBA MEXA 7100-DEGR with a heated line selector the system employed for regulated gaseous emission measurement and aftertreatment evaluation.
Journal Article

Analytical Structural Stress and Stress Intensity Factor Solutions for Similar and Dissimilar Spot Welds in Cross-Tension Specimens

2020-08-11
Abstract New analytical structural stress solutions for a rigid inclusion in a finite square thin plate with clamping edges under opening loading conditions are developed. The new solutions are used to derive new analytical structural stress and stress intensity factor solutions for similar and dissimilar spot welds in cross-tension specimens. Three-dimensional finite element analyses are conducted to obtain the stress intensity factor solutions for similar spot welds and dissimilar magnesium/steel spot welds in cross-tension specimens of equal thickness with different ratios of half-specimen width-to-weld radius. A comparison of the analytical and computational solutions indicates that the analytical stress intensity factor solutions for similar spot welds in cross-tension specimens of equal thickness are accurate for large ratios of half-specimen width-to-weld radius.
Journal Article

Assessing Viscosity in Hydro-Erosive Grinding Process via Refractometry

2019-08-22
Abstract The manufacturing of diesel injector nozzles requires precision processing to produce multiple micro-holes. An abrasive fluid containing a mixture of mineral oil and hard particles is used for rounding them, ensuring the hydrodynamics of the injection. As verified in a previous investigation, the viscosity of the fluid undergoes uncontrolled changes during hydro-erosive (HE) grinding. Such undesired viscosity changes are detrimental to the process and difficult to assess. The current investigation aims to study the possibility of using the refractive index of the oils used in the HE grinding for assessing their viscosities. A calibration curve correlating the refractive index and viscosity was obtained from the analysis of samples produced by mixing two distinct mineral oils in different proportions. The determined calibration curve was tested with 45 samples of filtered oil, collected directly from the tanks during the HE grinding.
Journal Article

Assessments of Pressure-Based Ignition Delay Measurements of Various Cetane Number Fuels in a Small-Bore Compression Ignition Engine

2021-04-09
Abstract With the increased use of low ignition quality fuels in advanced compression ignition engines, the extended ignition delay and two-stage ignition behavior shown on the measured in-cylinder pressure profile raise a question about at what point of the pressure trace should be identified as the start of combustion (SOC). Previous studies used numerous methods, but a systematic evaluation is lacking, particularly for low ignition quality fuels used in a small-bore engine. The present study bridges this gap by performing high-speed imaging of OH* chemiluminescence in a small-bore optical compression ignition engine, against which various methods of ignition delay calculation are assessed for a correct representation of the start of high-temperature reaction—i.e., the actual SOC.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Cavitation Erosion Prediction at Vibrating Walls by Coupling Computational Fluid Dynamics and Multi-body-Dynamic Solutions

2021-08-24
Abstract Cavitation erosion caused by high-frequency vibrating walls can appear in the cooling circuit of internal combustion engines along the liners. The vibrations caused by the mechanical forces acting on the crank drive can lead to temporary regions of low pressure in the coolant with local vapor formation, and vapor collapse close to the liner walls leads to erosion damage, which can strongly reduce the lifetime of the entire engine. The experimental investigation of this phenomenon is so time consuming and expensive, which it is usually not feasible during the design phase. Therefore, numerical tools for erosion damage prediction should be preferred. This study presents a numerical workflow for the prediction of cavitation erosion damages by coupling a three-dimensional (3D) Multi-Body-Dynamic (MBD) simulation tool with a 3D Computational Fluid Dynamics (CFD) solver.
Journal Article

Characterization of Friction Stir Processed Aluminum-Graphene Nanoplatelets Composites

2020-01-23
Abstract The present study deals with the investigation on microstructural and mechanical properties of friction stir processed (FSPed) pure Aluminum (Al)-Graphene Nanoplatelets (GNPs) composites. Composite specimens such as castings were made by blending 0.5 wt.%, 1.0 wt.%, 1.5 wt.%, and 2.0 wt.% of GNPs in pure Al matrix using the ultrasonic-assisted stir casting technique (UASCT). Also for enhancement of mechanical properties via grain refinement the friction stir processing (FSP) has been employed, as well as mechanical properties like tensile strength and microhardness were evaluated. Moreover, the microstructural analysis were done using Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), transmission electron microscopy (TEM), and X-Ray Diffraction (XRD) examination were also performed for inspecting the changes occurred during synthesis of the fabricated composites after FSP.
X