Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

Benchmarking a 2-Stroke Spark Ignition Heavy Fuel Engine

2012-04-16
2012-01-0397
Heavy fuel engines have typically been limited to large, heavy compression ignition engines. However, with the push by the US military to use a common fuel (JP5/JP8/diesel) there is a need to develop small, lightweight, high performance engines that are also capable of operating on heavy fuel. Recent advancements in air assisted direct injection technologies have improved fuel atomization to the level necessary to overcome the poor physical properties of heavy fuel. This has permitted the operation of small two-stroke engines which retain the advantage of a lightweight design with high power output. This paper discusses the process of benchmarking a two-stroke heavy fuel spark ignited engine with an integrated air-assist direct injection system. The setup and commissioning phases of the testing are outlined, including specific techniques for quantifying scavenging, burn rate, and heat release characteristics with the objective of validating a 1-D performance simulation model.
Technical Paper

Comparison of In-Use Emissions from Diesel and Natural Gas Trucks and Buses

2000-12-04
2000-01-3473
Emissions from heavy-duty vehicles in real operation on the road often differ greatly from those that would be projected from laboratory testing. Reasons for this difference include variations between laboratory and real-world driving conditions, wear and deterioration that are not effectively modeled by laboratory tests, inadequate or inappropriate in-use maintenance, and the use of “cycle-beating” strategies and “defeat devices” by engine manufacturers. This paper analyzes data showing in-use emissions from heavy-duty diesel and natural gas vehicles tested using various driving cycles on chassis dynamometers. It is shown that average in-use emissions of particulate matter (PM) and oxides of nitrogen (NOx) from late model heavy-duty diesel engines are much higher than predicted by current emission models, and greatly exceed the emission standards to which these engines were certified.
Technical Paper

Development of Truck Engine Technologies for Use with Fischer-Tropsch Fuels

2001-09-24
2001-01-3520
The Fischer-Tropsch (FT) process can be used to synthesize diesel fuels from a variety of energy sources, including coal, natural gas and biomass. Diesel fuels produced from the FT process are essentially sulfur-free, have very low aromatic content, and have excellent ignition characteristics. Because of these favorable attributes, FT diesel fuels may offer environmental benefits over transportation fuels derived from crude oil. Previous tests have shown that FT diesel fuel can be used in unmodified engines and have been shown to lower regulated emissions. Whereas exhaust emissions reductions from these previous studies have been impressive, this paper demonstrates that far greater exhaust emissions reductions are possible if the diesel engine is optimized to exploit the properties of the FT fuels. A Power Stroke 7.3 liter turbocharged diesel engine has been modified for use with FT diesel.
Technical Paper

EBDI® - Application of a Fully Flexible High BMEP Downsized Spark Ignited Engine

2010-04-12
2010-01-0587
The Ethanol-Boosted Direct Injection (EBDI) demonstrator engine is a collaborative project led by Ricardo targeted at reducing the fuel consumption of a spark-ignited engine. This paper describes the design challenges to upgrade an existing engine architecture and the synergistic use of a combination of technologies that allows a significant reduction in fuel consumption and CO₂ emissions. Features include an extremely reduced displacement for the target vehicle, 180 bar cylinder pressure capability, cooled exhaust gas recirculation, advanced boosting concepts and direct injection. Precise harmonization of these individual technologies and control algorithms provide optimized operation on gasoline of varying octane and ethanol content.
Journal Article

Studies on the Impact of 300 MPa Injection Pressure on Engine Performance, Gaseous and Particulate Emissions

2013-04-08
2013-01-0897
An investigation has been carried out to examine the influence of up to 300 MPa injection pressure on engine performance and emissions. Experiments were performed on a 4 cylinder, 4 valve / cylinder, 4.5 liter John Deere diesel engine using the Ricardo Twin Vortex Combustion System (TVCS). The study was conducted by varying the injection pressure, Start of Injection (SOI), Variable Geometry Turbine (VGT) vane position and a wide range of EGR rates covering engine out NOx levels between 0.3 g/kWh to 2.5 g/kWh. A structured Design of Experiment approach was used to set up the experiments, develop empirical models and predict the optimum results for a range of different scenarios. Substantial fuel consumption benefits were found at the lowest NOx levels using 300 MPa injection pressure. At higher NOx levels the impact was nonexistent. In a separate investigation a Cambustion DMS-500 fast particle spectrometer, was used to sample and analyze the exhaust gas.
X